Maximality of Quantum Error-Correcting Code Spaces

被引:0
|
作者
Cheng-Yang Zhang
Zhi-Hua Guo
Huai-Xin Cao
Ling Lu
机构
[1] Shaanxi Normal University,School of Mathematics and Information Science
[2] Army Academy of Border and Coastal Defence,T&R Office of Mathematics
来源
International Journal of Theoretical Physics | 2018年 / 57卷
关键词
Quantum channel; Error-correcting code space; Maximally error-correcting code space;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum error-correcting is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noises. An important task in quantum error-correcting is, for a given quantum channel, to find an error-correcting code space (ECCS) that contains more correctable information. In this paper, we introduce first the concept of a maximally error-correcting code space (MECCS) of a quantum channel and prove that any ECCS of a quantum channel must be contained in an MECCS of that channel. We also prove that every quantum channel has always an MECCS. Moreover, we prove a sufficient and necessary condition for the direct sum of two orthogonal ECCSs of the same channel to be an ECCS of that channel and therefore obtain a characterization of an MECCS. Lastly, we discuss the maximality of ECCSs of a quantum channel by introducing the concept of the maximal dimension C(𝓔)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C(\mathcal {E})$\end{document} of ECCSs of a quantum channel 𝓔\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {E}$\end{document}. A necessary and sufficient condition for C(𝓔)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C(\mathcal {E})=k$\end{document} is established by means of the rank-k numerical range of an operator.
引用
收藏
页码:3190 / 3199
页数:9
相关论文
共 50 条
  • [1] Maximality of Quantum Error-Correcting Code Spaces
    Zhang, Cheng-Yang
    Guo, Zhi-Hua
    Cao, Huai-Xin
    Lu, Ling
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (10) : 3190 - 3199
  • [2] Quantum error-correcting code for burst error
    Kawabata, S
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 231 - 234
  • [3] Spacetime as a quantum error-correcting code?
    Bain, Jonathan
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2020, 71 : 26 - 36
  • [4] Nonadditive quantum error-correcting code
    Yu, Sixia
    Chen, Qing
    Lai, C. H.
    Oh, C. H.
    PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [5] Quantum error-correcting code for ternary logic
    Majumdar, Ritajit
    Basu, Saikat
    Ghosh, Shibashis
    Sur-Kolay, Susmita
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [6] Experimental implementation of a concatenated quantum error-correcting code
    Boulant, N
    Viola, L
    Fortunato, EM
    Cory, DG
    PHYSICAL REVIEW LETTERS, 2005, 94 (13)
  • [7] Testing a quantum error-correcting code on various platforms
    Guo, Qihao
    Zhao, Yuan-Yuan
    Grassl, Markus
    Nie, Xinfang
    Xiang, Guo-Yong
    Xin, Tao
    Yin, Zhang-Qi
    Zeng, Bei
    SCIENCE BULLETIN, 2021, 66 (01) : 29 - 35
  • [8] Error-correcting source code
    Ajiro, Y
    Ueda, K
    Cho, K
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP98, 1998, 1520 : 40 - 54
  • [9] Quantum mechanics - Error-correcting code keeps quantum computers on track
    Cipra, B
    SCIENCE, 1996, 272 (5259) : 199 - 199
  • [10] The first quantum error-correcting code for single deletion errors
    Nakayama, Ayumu
    Hagiwara, Manabu
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (04): : 100 - 104