Twisted index on hyperbolic four-manifolds

被引:0
作者
Daniele Iannotti
Antonio Pittelli
机构
[1] Scuola Superiore Meridionale,Dipartimento di Matematica
[2] INFN,undefined
[3] Università di Torino,undefined
[4] INFN,undefined
[5] Sezione di Torino,undefined
来源
Letters in Mathematical Physics | / 114卷
关键词
Supersymmetry; Differential geometry; Gauge theory; Index theory; Dualities; Equivariant cohomology; 81Q60; 81T13; 81T20; 81T35; 81T70; 55N25; 58J20;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the topologically twisted index for four-dimensional N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} gauge theories quantized on AdS2×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times S^1$$\end{document}. We compute the index by applying supersymmetric localization to partition functions of vector and chiral multiplets on AdS2×T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{AdS}_2}\times T^2$$\end{document}, with and without a boundary: in both instances we classify normalizability and boundary conditions for gauge, matter and ghost fields. The index is twisted as the dynamical fields are coupled to a R-symmetry background 1-form with non-trivial exterior derivative and proportional to the spin connection. After regularization, the index is written in terms of elliptic gamma functions, reminiscent of four-dimensional holomorphic blocks, and crucially depends on the R-charge.
引用
收藏
相关论文
共 162 条
[1]  
Intriligator KA(1996)Mirror symmetry in three-dimensional gauge theories Phys. Lett. B 387 513-519
[2]  
Seiberg N(2010)Liouville correlation functions from four-dimensional gauge theories Lett. Math. Phys. 91 167-197
[3]  
Alday LF(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-129
[4]  
Gaiotto D(2011)Index for three dimensional superconformal field theories with general R-charge assignments JHEP 04 007-1527
[5]  
Tachikawa Y(2011)SUSY gauge theories on squashed three-spheres JHEP 05 014-1286
[6]  
Pestun V(2011)Cohomological localization of Chern–Simons theory JHEP 08 008-334
[7]  
Imamura Y(2012)Twisted supersymmetric 5D Yang-Mills theory and contact geometry JHEP 05 125-602
[8]  
Yokoyama S(2015)Partition functions of Commun. Math. Phys. 334 1483-896
[9]  
Hama N(2013) gauge theories on S JHEP 10 095-146
[10]  
Hosomichi K(2015) and vortices Commun. Math. Phys. 333 1241-476