Approximation of Functions by n-Separate Wavelets in the Spaces Lp(ℝ), 1 ≤ p ≤ ∞

被引:0
作者
E. A. Pleshcheva
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2020年 / 308卷
关键词
wavelet; scaling function; basis; multiresolution analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the orthonormal bases of n-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space L2(ℝ) is formed by shifts and compressions of a single function ψ. In contrast to the classical case, we consider a basis of L2(ℝ) formed by shifts and compressions of n functions ψs, s = 1,...,n. The constructed n-separate wavelets form an orthonormal basis of L2(ℝ). In this case, the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{s = 1}^n {\sum\nolimits_{j \in {\rm Z}} {\sum\nolimits_{k \in {\rm Z}} {f,\psi _{nj + s}^s >\psi _{nj + s}^s} } } $$\end{document} converges to the function f in the space L2(ℝ). We write additional constraints on the functions ϕs and ψs, s = 1,..., n, that provide the convergence of the series to the function f in the spaces Lp(ℝ), 1 ≤ p <- ∞, in the norm and almost everywhere.
引用
收藏
页码:178 / 187
页数:9
相关论文
共 3 条
[1]  
Pleshcheva E A(2011)“New generalization of orthogonal wavelet bases,” Proc. Steklov Inst. Math. 273 S124-S132
[2]  
Berkolaiko M Z(1994)“On infinitely smooth compactly supported almost-wavelets,” Math. Notes 56 877-883
[3]  
Novikov I Ya(undefined)undefined undefined undefined undefined-undefined