MedSRGAN: medical images super-resolution using generative adversarial networks

被引:0
|
作者
Yuchong Gu
Zitao Zeng
Haibin Chen
Jun Wei
Yaqin Zhang
Binghui Chen
Yingqin Li
Yujuan Qin
Qing Xie
Zhuoren Jiang
Yao Lu
机构
[1] Sun Yat-sen University,School of Data and Computer Science
[2] University of Michigan,Department of Radiology
[3] The Fifth Affiliated Hospital of Sun Yat-sen University,Department of Radiology
[4] Guangdong Province Key Laboratory of Computational Science,undefined
来源
Multimedia Tools and Applications | 2020年 / 79卷
关键词
Medical images; Super-resolution (SR); Deep learning; Generative adversarial networks (GAN);
D O I
暂无
中图分类号
学科分类号
摘要
Super-resolution (SR) in medical imaging is an emerging application in medical imaging due to the needs of high quality images acquired with limited radiation dose, such as low dose Computer Tomography (CT), low field magnetic resonance imaging (MRI). However, because of its complexity and higher visual requirements of medical images, SR is still a challenging task in medical imaging. In this study, we developed a deep learning based method called Medical Images SR using Generative Adversarial Networks (MedSRGAN) for SR in medical imaging. A novel convolutional neural network, Residual Whole Map Attention Network (RWMAN) was developed as the generator network for our MedSRGAN in extracting the useful information through different channels, as well as paying more attention on meaningful regions. In addition, a weighted sum of content loss, adversarial loss, and adversarial feature loss were fused to form a multi-task loss function during the MedSRGAN training. 242 thoracic CT scans and 110 brain MRI scans were collected for training and evaluation of MedSRGAN. The results showed that MedSRGAN not only preserves more texture details but also generates more realistic patterns on reconstructed SR images. A mean opinion score (MOS) test on CT slices scored by five experienced radiologists demonstrates the efficiency of our methods.
引用
收藏
页码:21815 / 21840
页数:25
相关论文
共 50 条
  • [1] MedSRGAN: medical images super-resolution using generative adversarial networks
    Gu, Yuchong
    Zeng, Zitao
    Chen, Haibin
    Wei, Jun
    Zhang, Yaqin
    Chen, Binghui
    Li, Yingqin
    Qin, Yujuan
    Xie, Qing
    Jiang, Zhuoren
    Lu, Yao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21815 - 21840
  • [2] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [3] SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
    Zhang, Kuan
    Hu, Haoji
    Philbrick, Kenneth
    Conte, Gian Marco
    Sobek, Joseph D.
    Rouzrokh, Pouria
    Erickson, Bradley J.
    TOMOGRAPHY, 2022, 8 (02) : 905 - 919
  • [4] Generative Adversarial Networks Capabilities for Super-Resolution Reconstruction of Weather Radar Echo Images
    Chen, Hongguang
    Zhang, Xing
    Liu, Yintian
    Zeng, Qiangyu
    ATMOSPHERE, 2019, 10 (09)
  • [5] Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2
    AlTakrouri, Saleh
    Noor, Norliza Mohd
    Ahmad, Norulhusna
    Justinia, Taghreed
    Usman, Sahnius
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 879 - 887
  • [6] Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks
    Salgueiro Romero, Luis
    Marcello, Javier
    Vilaplana, Veronica
    REMOTE SENSING, 2020, 12 (15)
  • [7] Multiframe infrared image super-resolution reconstruction using generative adversarial networks
    Li F.
    He X.
    Wei Z.
    He J.
    He D.
    2018, Chinese Society of Astronautics (47):
  • [8] Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review
    Fu, Kui
    Peng, Jiansheng
    Zhang, Hanxiao
    Wang, Xiaoliang
    Jiang, Frank
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1977 - 1997
  • [9] Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks
    Yuan, Cao
    Deng, Kaidi
    Li, Chen
    Zhang, Xueting
    Li, Yaqin
    ENTROPY, 2022, 24 (08)
  • [10] Segmentation-aware image super-resolution with generative adversarial networks
    Wang, Jiliang
    Jin, Cancan
    Zhou, Siwang
    MULTIMEDIA SYSTEMS, 2025, 31 (01)