MedSRGAN: medical images super-resolution using generative adversarial networks

被引:0
|
作者
Yuchong Gu
Zitao Zeng
Haibin Chen
Jun Wei
Yaqin Zhang
Binghui Chen
Yingqin Li
Yujuan Qin
Qing Xie
Zhuoren Jiang
Yao Lu
机构
[1] Sun Yat-sen University,School of Data and Computer Science
[2] University of Michigan,Department of Radiology
[3] The Fifth Affiliated Hospital of Sun Yat-sen University,Department of Radiology
[4] Guangdong Province Key Laboratory of Computational Science,undefined
来源
关键词
Medical images; Super-resolution (SR); Deep learning; Generative adversarial networks (GAN);
D O I
暂无
中图分类号
学科分类号
摘要
Super-resolution (SR) in medical imaging is an emerging application in medical imaging due to the needs of high quality images acquired with limited radiation dose, such as low dose Computer Tomography (CT), low field magnetic resonance imaging (MRI). However, because of its complexity and higher visual requirements of medical images, SR is still a challenging task in medical imaging. In this study, we developed a deep learning based method called Medical Images SR using Generative Adversarial Networks (MedSRGAN) for SR in medical imaging. A novel convolutional neural network, Residual Whole Map Attention Network (RWMAN) was developed as the generator network for our MedSRGAN in extracting the useful information through different channels, as well as paying more attention on meaningful regions. In addition, a weighted sum of content loss, adversarial loss, and adversarial feature loss were fused to form a multi-task loss function during the MedSRGAN training. 242 thoracic CT scans and 110 brain MRI scans were collected for training and evaluation of MedSRGAN. The results showed that MedSRGAN not only preserves more texture details but also generates more realistic patterns on reconstructed SR images. A mean opinion score (MOS) test on CT slices scored by five experienced radiologists demonstrates the efficiency of our methods.
引用
收藏
页码:21815 / 21840
页数:25
相关论文
共 50 条
  • [1] MedSRGAN: medical images super-resolution using generative adversarial networks
    Gu, Yuchong
    Zeng, Zitao
    Chen, Haibin
    Wei, Jun
    Zhang, Yaqin
    Chen, Binghui
    Li, Yingqin
    Qin, Yujuan
    Xie, Qing
    Jiang, Zhuoren
    Lu, Yao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21815 - 21840
  • [2] Super-resolution of magnetic resonance images using Generative Adversarial Networks
    Guerreiro, Joao
    Tomas, Pedro
    Garcia, Nuno
    Aidos, Helena
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2023, 108
  • [3] Generative Adversarial Networks for Medical Image Super-resolution
    Zhao, Min
    Naderian, Amirkhashayar
    Sanei, Saeid
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [4] Improving the spatial resolution of solar images using super-resolution diffusion generative adversarial networks
    Song, Wei
    Ma, Ying
    Sun, Haoying
    Zhao, Xiaobing
    Lin, Ganghua
    ASTRONOMY & ASTROPHYSICS, 2024, 686
  • [5] Super-Resolution Reconstruction of Cell Images Based on Generative Adversarial Networks
    Pan, Bin
    Du, Yifeng
    Guo, Xiaoming
    IEEE ACCESS, 2024, 12 : 72252 - 72263
  • [6] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [7] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [8] ISRGAN: Improved Super-Resolution Using Generative Adversarial Networks
    Chudasama, Vishal
    Upla, Kishor
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 109 - 127
  • [9] Image super-resolution using progressive generative adversarial networks for medical image analysis
    Mahapatra, Dwarikanath
    Bozorgtabar, Behzad
    Garnavi, Rahil
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 71 : 30 - 39
  • [10] Super-resolution with generative adversarial networks for improved object detection in aerial images
    Haykir, Aslan Ahmet
    Oksuz, Ilkay
    INFORMATION DISCOVERY AND DELIVERY, 2023, 51 (04) : 349 - 357