Bipartite Subgraphs of Graphs with Maximum Degree Three

被引:0
|
作者
Stanisław Bylka
Adam Idzik
Jan Komar
机构
[1] Institute of Computer Science,
[2] Polish Academy of Sciences,undefined
[3] Ordona 21,undefined
[4] 01-237 Warszawa,undefined
[5] Poland.,undefined
来源
Graphs and Combinatorics | 1999年 / 15卷
关键词
Key words: bipartite graph; n-colourable graph; extremal graph.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for a connected graph G with maximum degree 3 there exists a bipartite subgraph of G containing almost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of the edges of G. Furthermore, we completely characterize the set of all extremal graphs, i.e. all connected graphs G=(V, E) with maximum degree 3 for which no bipartite subgraph has more than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of the edges; |E| denotes the cardinality of E. For 2-edge-connected graphs there are two kinds of extremal graphs which realize the lower bound \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:129 / 136
页数:7
相关论文
共 37 条
  • [1] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [2] The maximum signless Laplacian spectral radius of graphs with forbidden subgraphs
    Chen, Dandan
    Ma, Xiaoling
    FILOMAT, 2023, 37 (24) : 8319 - 8330
  • [3] On the maximum ABC index of bipartite graphs without pendent vertices
    Shao, Zehui
    Wu, Pu
    Jiang, Huiqin
    Sheikholeslami, S. M.
    Wang, Shaohui
    OPEN CHEMISTRY, 2020, 18 (01): : 39 - 49
  • [4] Distance spectral radius of unicyclic graphs with fixed maximum degree
    Huang, Hezan
    Zhou, Bo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)
  • [5] Extremal Graphs for Even Linear Forests in Bipartite Graphs
    Yuan, Long-Tu
    Zhang, Xiao-Dong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 5 - 16
  • [6] Extremal bipartite graphs with high girth
    Balbuena, C.
    Garcia-Vazquez, P.
    Marcote, X.
    Valenzuela, J. C.
    ARS COMBINATORIA, 2007, 83 : 3 - 14
  • [7] Extremal properties of the bipartite vertex frustration of graphs
    Yarahmadi, Zahra
    Ashrafi, Ali Reza
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1774 - 1777
  • [8] MAXIMUM CUTWIDTH PROBLEM FOR GRAPHS
    Hao JianxiuDept. of Math.
    Applied Mathematics:A Journal of Chinese Universities, 2003, (02) : 235 - 242
  • [9] Maximum cutwidth problem for graphs
    Jianxiu Hao
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (2) : 235 - 242
  • [10] Extremal Graphs on the Rupture Degree
    Qin, Xiaoxiao
    Xie, Ting
    Li, Wen
    Li, Yinkui
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)