Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning

被引:0
|
作者
Thinh Quy Duc Pham
Truong Vinh Hoang
Xuan Van Tran
Quoc Tuan Pham
Seifallah Fetni
Laurent Duchêne
Hoang Son Tran
Anne-Marie Habraken
机构
[1] Thu Dau Mot University,Institute of Strategy Development
[2] RWTH-Aachen University,Chair of Mathematics for Uncertainty Quantification
[3] Ton Duc Thang University,Division of Computational Mathematics and Engineering, Institute for Computational Science
[4] Ton Duc Thang University,Faculty of Civil Engineering
[5] University of Liège,undefined
[6] Fonds de la Recherche Scientifique de Belgique (F.R.S-FNRS),undefined
来源
Journal of Intelligent Manufacturing | 2023年 / 34卷
关键词
Deep learning; Directed energy deposition; Temperature evolutions; Sensitivity analysis; SHAP method;
D O I
暂无
中图分类号
学科分类号
摘要
Typical computer-based parameter optimization and uncertainty quantification of the additive manufacturing process usually requires significant computational cost for performing high-fidelity heat transfer finite element (FE) models with different process settings. This work develops a simple surrogate model using a feedforward neural network (FFNN) for a fast and accurate prediction of the temperature evolutions and the melting pool sizes in a metal bulk sample (3D horizontal layers) manufactured by the DED process. Our surrogate model is trained using high-fidelity data obtained from the FE model, which was validated by experiments. The temperature evolutions and the melting pool sizes predicted by the FFNN model exhibit accuracy of 99%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99\%$$\end{document} and 98%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98\%$$\end{document}, respectively, compared with the FE model for unseen process settings in the studied range. Moreover, to evaluate the importance of the input features and explain the achieved accuracy of the FFNN model, a sensitivity analysis (SA) is carried out using the SHapley Additive exPlanation (SHAP) method. The SA shows that the most critical enriched features impacting the predictive capability of the FFNN model are the vertical distance from the laser head position to the material point and the laser head position.
引用
收藏
页码:1701 / 1719
页数:18
相关论文
共 50 条
  • [31] Bead Geometry Prediction in Laser-Wire Additive Manufacturing Process Using Machine Learning: Case of Study
    Mbodj, Natago Guile
    Abuabiah, Mohammad
    Plapper, Peter
    El Kandaoui, Maxime
    Yaacoubi, Slah
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [32] Fast and Accurate View Classification of Cardiac Echocardiograms Using Deep Learning
    Madani, Ali
    Arnaout, Ramy
    Mofrad, Mohammad
    Arnaout, Rima
    CIRCULATION, 2017, 136
  • [33] PROCESS-AWARE PREDICTION OF GEOMETRIC ACCURACY FOR ADDITIVE MANUFACTURING VIA TRANSFER LEARNING
    Lin, Daphne
    Seepersad, Carolyn
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [34] Methods of process mining and prediction using deep learning
    Cieplak, Tomasz
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Maj, Michal
    Pliszczuk, Damian
    Rymarczyk, Pawel
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (03): : 146 - 149
  • [35] Quality monitoring in additive manufacturing using emission spectroscopy and unsupervised deep learning
    Ren, Wenjing
    Wen, Guangrui
    Zhang, Zhifen
    Mazumder, Jyoti
    MATERIALS AND MANUFACTURING PROCESSES, 2022, 37 (11) : 1339 - 1346
  • [36] Fast pressure distribution prediction of airfoils using deep learning
    Hui, Xinyu
    Bai, Junqiang
    Wang, Hui
    Zhang, Yang
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 105
  • [37] Fast Indoor Radio Propagation Prediction Using Deep Learning
    Florez-Gonzalez, Andres J.
    Viteri-Mera, Carlos A.
    Achicanoy-Martinez, Wilson O.
    2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2024,
  • [38] Prediction of machine learning-based hardness for the polycarbonate using additive manufacturing
    Mahmoud, Haitham A.
    Shanmugasundar, G.
    Vyavahare, Swapnil
    Kumar, Rakesh
    Cep, Robert
    Salunkhe, Sachin
    Gawade, Sharad
    Nasr, Emad S. Abouel
    FRONTIERS IN MATERIALS, 2024, 11
  • [39] Accurate prediction of somatic variants using deep learning model.
    Zhang, Peng
    Wang, Kai
    Yao, Ming
    Wang, Aodi
    Chen, Lijuan
    Liu, Angen
    Shi, Xiaoliang
    Zhang, Shiyue
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [40] Accurate Prediction of Human Essential Proteins Using Ensemble Deep Learning
    Li, Yiming
    Zeng, Min
    Wu, Yifan
    Li, Yaohang
    Li, Min
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3263 - 3271