On 1-Laplacian elliptic problems involving a singular term and an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document}-data

被引:0
作者
Youssef El Hadfi
Mohamed El Hichami
机构
[1] National School of Applied Sciences Khouribga,Laboratory LIPIM
[2] Sultan Moulay Slimane University,undefined
关键词
Singular elliptic equations; -Laplacian; 1-Laplacian; Functions of bounded variations; -data; 35J75; 35J60; 35B65; 35A02; 46E30;
D O I
10.1007/s41808-023-00210-2
中图分类号
学科分类号
摘要
In this paper, we look at the problem -Δpu+|∇u|p=fh(u)inΩ,u≥0inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} {} -\Delta _{p}u+\vert \nabla u\vert ^{p}=fh(u) &{} \hbox { in } \Omega , \\ u\ge 0 &{} \hbox { in }\Omega , \\ u=0&{} \hbox { on } \partial \Omega , \end{array} \right. \end{aligned}$$\end{document}with Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded open subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} with Lipschitz boundary, Δpu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u$$\end{document} is the p-laplacian operator for 1≤p<N,f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<N, f\in L^{1}(\Omega )$$\end{document} is nonnegative and h is a continuous function that may be singular at s=0+.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0^{+}.$$\end{document} We will demonstrate the existence of solutions in the case 1≤p<N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<N.$$\end{document} Moreover, if p=1,f>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1, f>0$$\end{document} and h is decreasing, we will show the uniqueness of the solutions.
引用
收藏
页码:501 / 533
页数:32
相关论文
共 49 条
[1]  
Andreu F(2001)The Dirichlet problem for the total variation flow J. Funct. Anal. 180 347-403
[2]  
Ballester C(1983)Pairings between measures and bounded functions and compensated compacteness Ann. Mat. Pura Appl. 135 293-318
[3]  
Caselles V(1992)Strongly nonlinear elliptic equations having natural growth terms and Nonlinear Anal. T. M. A. 19 573-579
[4]  
Mazón JM(1998) data Annali Math. Pura Appl. 152 183-196
[5]  
Anzellotti G(2016)Existence of bounded solution for non linear elliptic unilateral problems Nonlinear Differ. Equ. App. 23 8-18
[6]  
Boccardo L(1999)Existence and uniqueness for Arch. Ration. Mech. Anal. 147 89-118
[7]  
Gallouet T(2006)-Laplace equations involving singular nonlinearities SIAM J. Appl. Math. 66 1383-1406
[8]  
Boccardo L(2013)Divergence-measure fields and hyperbolic conservation laws Asymp. Anal. 84 181-195
[9]  
Murat F(2018)Variable exponent, linear growth functionals in image restoration Nonlinear Differ. Equ. Appl. 25 18-75
[10]  
Puel JP(2019)Nonlinear elliptic equation with singular nonlinearities Calc. Var. 58 129-141