Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis

被引:0
|
作者
Violeta J. Rodriguez
Yue Pan
Ana S. Salazar
Nicholas Fonseca Nogueira
Patricia Raccamarich
Nichole R. Klatt
Deborah L. Jones
Maria L. Alcaide
机构
[1] University of Miami Miller School of Medicine,Department of Psychiatry and Behavioral Sciences
[2] University of Georgia,Department of Psychology
[3] University of Miami Miller School of Medicine,Division of Biostatistics, Department of Public Health Sciences
[4] University of Miami Miller School of Medicine,Division of Infectious Diseases, Department of Medicine
[5] University of Minnesota,Surgical Outcomes and Precision Medicine Research Division, Department of Surgery
来源
Archives of Gynecology and Obstetrics | 2024年 / 309卷
关键词
Bacterial vaginosis; Unsupervised machine learning; Sexual behavior; Women;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1053 / 1063
页数:10
相关论文
共 50 条
  • [21] Exploration of critical care data by using unsupervised machine learning
    Hyun, Sookyung
    Kaewprag, Pacharmon
    Cooper, Cheryl
    Hixon, Brenda
    Moffatt-Bruce, Susan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194
  • [22] Livestock Informatics toolkit: Visualizing complex behavioral patterns across multiple PLF sensors using unsupervised machine learning
    McVey, C.
    Hsieh, F.
    Manriquez, D.
    Pinedo, P.
    Horback, K.
    JOURNAL OF DAIRY SCIENCE, 2022, 105 : 98 - 98
  • [23] Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification
    Chao, Chieh-Ju
    Kato, Nahoko
    Scott, Christopher G.
    Lopez-Jimenez, Francisco
    Lin, Grace
    Kane, Garvan C.
    Pellikka, Patricia A.
    JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (12) : 1214 - +
  • [24] Mind the Queue: A Case Study in Visualizing Heterogeneous Behavioral Patterns in Livestock Sensor Data Using Unsupervised Machine Learning Techniques
    McVey, Catherine
    Hsieh, Fushing
    Manriquez, Diego
    Pinedo, Pablo
    Horback, Kristina
    FRONTIERS IN VETERINARY SCIENCE, 2020, 7
  • [25] Using Unsupervised Machine Learning to Characterize Capillary Flow and Residual Trapping
    Ni, Hailun
    Benson, Sally M.
    WATER RESOURCES RESEARCH, 2020, 56 (08)
  • [26] Clustering of Heart Failure Phenotypes in Johannesburg Using Unsupervised Machine Learning
    Mpanya, Dineo
    Celik, Turgay
    Klug, Eric
    Ntsinjana, Hopewell
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [27] Making Sense of Student Success and Risk Through Unsupervised Machine Learning and Interactive Storytelling
    Al-Doulat, Ahmad
    Nur, Nasheen
    Karduni, Alireza
    Benedict, Aileen
    Al-Hossami, Erfan
    Maher, Mary Lou
    Dou, Wenwen
    Dorodchi, Mohsen
    Niu, Xi
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT I, 2020, 12163 : 3 - 15
  • [28] Unsupervised Machine Learning to Identify Risk Factors of Pyeloplasty Failure in Ureteropelvic Junction Obstruction
    Song, Jonathan J.
    Kielhofner, Jane
    Qian, Zhiyu
    Gu, Catherine
    Boysen, William
    Chang, Steven
    Dahl, Douglas
    Eswara, Jairam
    Haleblian, George
    Wintner, Anton
    Wollin, Daniel A.
    JOURNAL OF ENDOUROLOGY, 2024, 38 (11) : 1164 - 1171
  • [29] Profiling Physical Fitness of Physical Education Majors Using Unsupervised Machine Learning
    Bonilla, Diego A.
    Sanchez-Rojas, Isabel A.
    Mendoza-Romero, Dario
    Moreno, Yurany
    Koci, Jana
    Gomez-Miranda, Luis M.
    Rojas-Valverde, Daniel
    Petro, Jorge L.
    Kreider, Richard B.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (01)
  • [30] Immunological Profiling of Paediatric Inflammatory Bowel Disease Using Unsupervised Machine Learning
    Coelho, Tracy
    Mossotto, Enrico
    Gao, Yifang
    Haggarty, Rachel
    Ashton, James J.
    Batra, Akshay
    Stafford, Imogen S.
    Beattie, Robert M.
    Williams, Anthony P.
    Ennis, Sarah
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2020, 70 (06) : 833 - 840