Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis

被引:0
|
作者
Violeta J. Rodriguez
Yue Pan
Ana S. Salazar
Nicholas Fonseca Nogueira
Patricia Raccamarich
Nichole R. Klatt
Deborah L. Jones
Maria L. Alcaide
机构
[1] University of Miami Miller School of Medicine,Department of Psychiatry and Behavioral Sciences
[2] University of Georgia,Department of Psychology
[3] University of Miami Miller School of Medicine,Division of Biostatistics, Department of Public Health Sciences
[4] University of Miami Miller School of Medicine,Division of Infectious Diseases, Department of Medicine
[5] University of Minnesota,Surgical Outcomes and Precision Medicine Research Division, Department of Surgery
来源
Archives of Gynecology and Obstetrics | 2024年 / 309卷
关键词
Bacterial vaginosis; Unsupervised machine learning; Sexual behavior; Women;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1053 / 1063
页数:10
相关论文
共 50 条
  • [1] Using unsupervised machine learning to classify behavioral risk markers of bacterial vaginosis
    Rodriguez, Violeta J.
    Pan, Yue
    Salazar, Ana S.
    Nogueira, Nicholas Fonseca
    Raccamarich, Patricia
    Klatt, Nichole R.
    Jones, Deborah L.
    Alcaide, Maria L.
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (03) : 1053 - 1063
  • [2] Ethnic disparity in diagnosing asymptomatic bacterial vaginosis using machine learning
    Celeste, Cameron
    Ming, Dion
    Broce, Justin
    Ojo, Diandra P.
    Drobina, Emma
    Louis-Jacques, Adetola F.
    Gilbert, Juan E.
    Fang, Ruogu
    Parker, Ivana K.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [3] APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS
    Baker, Yolanda S.
    Agrawal, Rajeev
    Foster, James A.
    Beck, Daniel
    Dozier, Gerry
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2014, : 241 - 246
  • [4] Unsupervised machine learning identifies predictive progression markers of IPF
    Pan, Jeanny
    Hofmanninger, Johannes
    Nenning, Karl-Heinz
    Prayer, Florian
    Roehrich, Sebastian
    Sverzellati, Nicola
    Poletti, Venerino
    Tomassetti, Sara
    Weber, Michael
    Prosch, Helmut
    Langs, Georg
    EUROPEAN RADIOLOGY, 2023, 33 (02) : 925 - 935
  • [5] Unsupervised machine learning identifies predictive progression markers of IPF
    Jeanny Pan
    Johannes Hofmanninger
    Karl-Heinz Nenning
    Florian Prayer
    Sebastian Röhrich
    Nicola Sverzellati
    Venerino Poletti
    Sara Tomassetti
    Michael Weber
    Helmut Prosch
    Georg Langs
    European Radiology, 2023, 33 : 925 - 935
  • [6] Clustering superconductors using unsupervised machine learning
    Roter, B.
    Ninkovic, N.
    Dordevic, S. V.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 598
  • [7] Unsupervised machine learning to classify language dimensions to constitute the linguistic complexity of mathematical word problems
    Bednorz, David
    Kleine, Michael
    INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 2023, 18 (01)
  • [8] Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data
    Cohn, Ryan
    Holm, Elizabeth
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (02) : 231 - 244
  • [9] Unsupervised Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials Image Data
    Ryan Cohn
    Elizabeth Holm
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 231 - 244
  • [10] Machine learning classifiers provide insight into the relationship between microbial communities and bacterial vaginosis
    Daniel Beck
    James A. Foster
    BioData Mining, 8