Implementing Brouwer’s database of strongly regular graphs

被引:0
作者
Nathann Cohen
Dmitrii V. Pasechnik
机构
[1] CNRS and Université Paris-Sud 11,Department of Computer Science
[2] The University of Oxford,undefined
来源
Designs, Codes and Cryptography | 2017年 / 84卷
关键词
Strongly regular graphs; Databases of combinatorial objects; Explicit computer implementations; 05E30; 68-04;
D O I
暂无
中图分类号
学科分类号
摘要
Andries Brouwer maintains a public database of existence results for strongly regular graphs on n≤1300\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le 1300$$\end{document} vertices. We have implemented most of the infinite families of graphs listed there in the open-source software Sagemath (The Sage Developers, http://www.sagemath.org), as well as provided constructions of the “sporadic” cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of n.
引用
收藏
页码:223 / 235
页数:12
相关论文
共 50 条
  • [1] Abel RJR(2015)Existence of five MOLS of orders 18 and 60 J. Comb. Des. 23 135-139
  • [2] Bondarenko A(2014)On Borsuk’s conjecture for two-distance sets Discret. Comput. Geom. 51 509-515
  • [3] Bouyukliev I(2003)Some new results on optimal codes over Des. Codes Cryptogr. 30 97-111
  • [4] Simonis J(1982)Polarities of G. Higman’s symmetric design and a strongly regular graph on Aequationes Math. 25 77-82
  • [5] Brouwer AE(1986) vertices Graphs Comb. 2 21-29
  • [6] Brouwer AE(1992)Uniqueness and nonexistence of some graphs related to J. Algebr. Comb. 1 329-346
  • [7] Brouwer AE(2005)On the Bull. Belg. Math. Soc. Simon Stevin 12 707-718
  • [8] van Eijl CA(2005)-rank of the adjacency matrices of strongly regular graphs J. Lond. Math. Soc. (2) 72 731-741
  • [9] Coolsaet K(2008)The uniqueness of the strongly regular graph srg(105,32,4,12) Discret. Math. 308 395-400
  • [10] Cossidente A(2002)Hemisystems on the Hermitian surface Adv. Geom. 2 301-306