D’Alembert Formula for Diffusion-Wave Equation

被引:0
|
作者
A. V. Pskhu
机构
[1] Institute of Applied Mathematics and Automation,
[2] Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences,undefined
来源
Lobachevskii Journal of Mathematics | 2023年 / 44卷
关键词
diffusion-wave equation; Liouville fractional derivative; d’Alembert formula;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:644 / 652
页数:8
相关论文
共 50 条
  • [21] Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type
    Lukashchuk, Stanislav Yu.
    Saburova, Regina D.
    NONLINEAR DYNAMICS, 2018, 93 (02) : 295 - 305
  • [22] A NOVEL FINITE DIFFERENCE SCHEME FOR TIME FRACTIONAL DIFFUSION-WAVE EQUATION WITH SINGULAR KERNEL
    Bouguetof, K.
    Haouam, K.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (03): : 681 - 688
  • [23] Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation
    Darzi, Rahmat
    Mohammadzade, Bahar
    Mousavi, Sahar
    Beheshti, Rozita
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (01): : 79 - 84
  • [24] A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation
    Carrer, J. A. M.
    Solheid, B. S.
    Trevelyan, J.
    Seaid, M.
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 4) : 3563 - 3580
  • [25] A boundary element method formulation based on the Caputo derivative for the solution of the diffusion-wave equation
    J. A. M. Carrer
    B. S. Solheid
    J. Trevelyan
    M. Seaid
    Engineering with Computers, 2022, 38 : 3563 - 3580
  • [26] Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type
    Stanislav Yu. Lukashchuk
    Regina D. Saburova
    Nonlinear Dynamics, 2018, 93 : 295 - 305
  • [27] Time distributed-order diffusion-wave equation. I. Volterra-type equation
    Atanackovic, Teodor M.
    Pilipovic, Stevan
    Zorica, Dusan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106): : 1869 - 1891
  • [28] Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder
    Yuriy Povstenko
    Fractional Calculus and Applied Analysis, 2011, 14 : 418 - 435
  • [29] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation
    Nauryzbay Adil
    Abdumauvlen S. Berdyshev
    B. E. Eshmatov
    Zharasbek D. Baishemirov
    Boundary Value Problems, 2023
  • [30] NON-AXISYMMETRIC SOLUTIONS TO TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN AN INFINITE CYLINDER
    Povstenko, Yuriy
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 418 - 435