Class number divisibility for imaginary quadratic fields

被引:0
作者
Olivia Beckwith
机构
[1] University of Illinois at Urbana-Champaign,
来源
Research in Number Theory | 2020年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this note we revisit classic work of Soundararajan on class groups of imaginary quadratic fields. Let A,B,g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B,g \ge 3$$\end{document} be positive integers such that gcd(A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (A,B)$$\end{document} is square-free. We refine Soundararajan’s result to show that if 4∤g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \not \mid g$$\end{document} or if A and B satisfy certain conditions, then the number of negative square-free D≡A(modB)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D \equiv A \pmod {B}$$\end{document} down to -X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-X$$\end{document} such that the ideal class group of Q(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}} (\sqrt{D})$$\end{document} contains an element of order g is bounded below by X12+ϵ(g)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^{\frac{1}{2} + \epsilon (g) - \epsilon }$$\end{document}, where the exponent is the same as in Soundararajan’s theorem. Combining this with a theorem of Frey, we give a lower bound for the number of quadratic twists of certain elliptic curves with p-Selmer group of rank at least 2, where p∈{3,5,7}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in \{3,5,7\}$$\end{document}.
引用
收藏
相关论文
共 30 条
[1]  
Baker A(1966)Linear forms in the logarithms of algebraic numbers (IV) Mathematika 13 204-216
[2]  
Beckwith O(2017)Indivisibility of imaginary quadratic fields Res. Math. Sci. 4 20-76
[3]  
Byeon D(2009)Rank-one quadratic twists of an infinite family of elliptic curves J. Reine Angew. Math. 633 67-62
[4]  
Daeyeol J(1984)Heuristics on class groups of number fields Number Theory 1068 33-420
[5]  
Kim C(1971)On the density of the discriminants of cubic fields, II Proc. R. Soc. Lond. A 322 405-596
[6]  
Cohen H(2010)On the Birch–Swinnerton–Dyer quotients modulo squares Ann. Math. 172 567-655
[7]  
Lenstra HW(1988)On the Selmer group of twists of elliptic curves with Can. J. Math. 15 449-23
[8]  
Davenport H(1991)-rational torsion points J. Am. Math. Soc. 4 1-320
[9]  
Heilbronn H(1986)The square-free sieve and the rank of elliptic curves Invent. Math. 84 225-211
[10]  
Dokchitser T(2007)Heegner points and derivatives of Funct. Approx. Comment. Math. 37 203-253