Schwarz Lemma in infinite-dimensional spaces

被引:0
作者
Manabu Ito
机构
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Schwarz Lemma; Infinite-dimensional holomorphy; Topological linear space; Minkowski functional; Primary 30C80; 46G20; Secondary 58C20; 58C10;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove an extension of the Schwarz Lemma that involves infinite-dimensional spaces. Our generalized version contains some known variations of this classical result in geometric function theory. We derive our extension in the context of the Minkowski functional.
引用
收藏
页码:735 / 748
页数:13
相关论文
共 6 条
[1]  
Hamada H(2000)Starlike mappings on bounded balanced domains with Pac. J. Math. 194 359-371
[2]  
Hamada H(1997)-plurisubharmonic defining functions Ann. Polon. Math. 67 269-275
[3]  
Honda T(2002)A Schwarz lemma on complex ellipsoids Math. Nachr. 233 129-139
[4]  
Kubota Y(1994)The growth theorem and Schwarz lemma on infinite dimensional domains Kodai Math. J. 17 246-255
[5]  
Morita K(1944)Some results on rigidity of holomorphic mappings Jpn. J. Math. 19 45-56
[6]  
Sugawara M(1941)Schwarz’s lemma in a homogeneous space of higher dimensions Proc. Imp. Acad. Tokyo 17 483-488