A comparison of machine learning techniques for survival prediction in breast cancer

被引:0
作者
Leonardo Vanneschi
Antonella Farinaccio
Giancarlo Mauri
Marco Antoniotti
Paolo Provero
Mario Giacobini
机构
[1] University of Milano-Bicocca,Department of Informatics, Systems and Communication (D.I.S.Co.)
[2] University of Torino,Computational Biology Unit, Molecular Biotechnology Center
[3] University of Torino,Department of Genetics, Biology and Biochemistry
[4] University of Torino,Department of Animal Production, Epidemiology and Ecology
来源
BioData Mining | / 4卷
关键词
Support Vector Machine; Feature Selection; Gene Expression Data; Random Forest; Genetic Programming;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 107 条
  • [1] Nevins JR(2007)Mining gene expression profiles: expression signatures as cancer phenotypes Nat Rev Genet 8 601-609
  • [2] Potti A(2002)Gene expression profiling predicts clinical outcome of breast cancer Nature 415 530-536
  • [3] van 't Veer LJ(2005)Applications of support vector machines to cancer classification with microarray data Int J Neural Syst 15 475-484
  • [4] Dai H(2003)Reliable classification of two-class cancer data using evolutionary algorithms Biosystems 72 111-129
  • [5] van de Vijver MJ(2003)Evolutionary algorithms for finding optimal gene sets in microarray prediction Bioinformatics 19 45-52
  • [6] He YD(2004)Genetic Programming for Mining DNA Chip Data from Cancer Patients Genetic Programming and Evolvable Machines 5 251-257
  • [7] Hart AAM(2005)Gene selection for classification of cancers using probabilistic model building genetic algorithm Biosystems 82 208-225
  • [8] Mao M(2007)Feature Selection and Molecular Classification of Cancer Using Genetic Programming Neoplasia 9 292-303
  • [9] Peterse HL(2002)A gene-expression signature as a predictor of survival in breast cancer N Engl J Med 347 1999-2009
  • [10] van der Kooy K(2003)Cancer classification using gene expression data Inf Syst 28 243-268