A Li-rich layered oxide cathode with negligible voltage decay

被引:0
|
作者
Dong Luo
He Zhu
Yi Xia
Zijia Yin
Yan Qin
Tianyi Li
Qinghua Zhang
Lin Gu
Yong Peng
Junwei Zhang
Kamila M. Wiaderek
Yalan Huang
Tingting Yang
Yu Tang
Si Lan
Yang Ren
Wenquan Lu
Christopher M. Wolverton
Qi Liu
机构
[1] City University of Hong Kong,Department of Physics
[2] Northwestern University,Department of Materials Science and Engineering
[3] Portland State University,Department of Mechanical and Materials Engineering
[4] Argonne National Laboratory,Chemical Sciences and Engineering Division
[5] Argonne National Laboratory,X
[6] Chinese Academy of Sciences,ray Science Division
[7] Tsinghua University,Beijing National Laboratory for Condensed Matter Physics
[8] Lanzhou University,Department of Materials Science and Engineering
[9] City University of Hong Kong,School of Materials and Energy, Electron Microscopy Centre of Lanzhou University and Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education
[10] City University of Hong Kong,Shenzhen Research Institute
[11] City University of Hong Kong,Centre for Neutron Scattering
来源
Nature Energy | 2023年 / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
With high capacity at low cost, Li- and Mn-rich (LMR) layered oxides are a promising class of cathodes for next-generation Li-ion batteries. However, substantial voltage decay during cycling, due to the unstable Li2MnO3 honeycomb structure, is still an obstacle to their practical deployment. Here we report a Co-free LMR Li-ion battery cathode with negligible voltage decay. The material has a composite structure consisting of layered LiTMO2 and various stacked Li2MnO3 components, where transition metal (TM) ions that reside in the Li layers of Li2MnO3 form caps to strengthen the stability of the honeycomb structure. This capped-honeycomb structure is persistent after high-voltage cycling and prevents TM migration and oxygen loss as shown by experimental and computational results. This work demonstrates that the long-standing voltage decay problem in LMRs can be effectively mitigated by internally pinning the honeycomb structure, which opens an avenue to developing next-generation high-energy cathode materials.
引用
收藏
页码:1078 / 1087
页数:9
相关论文
共 50 条
  • [1] A Li-rich layered oxide cathode with negligible voltage decay
    Luo, Dong
    Zhu, He
    Xia, Yi
    Yin, Zijia
    Qin, Yan
    Li, Tianyi
    Zhang, Qinghua
    Gu, Lin
    Peng, Yong
    Zhang, Junwei
    Wiaderek, Kamila M.
    Huang, Yalan
    Yang, Tingting
    Tang, Yu
    Lan, Si
    Ren, Yang
    Lu, Wenquan
    Wolverton, Christopher M.
    Liu, Qi
    NATURE ENERGY, 2023, 8 (10) : 1078 - 1087
  • [2] Unraveling the Voltage Decay Phenomenon in Li-Rich Layered Oxide Cathode of No Oxygen Activity
    Li, Ning
    Hwang, Sooyeon
    Sun, Meiling
    Fu, Yanbao
    Battaglia, Vincent S.
    Su, Dong
    Tong, Wei
    ADVANCED ENERGY MATERIALS, 2019, 9 (47)
  • [3] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Kun Zhang
    Biao Li
    Yuxuan Zuo
    Jin Song
    Huaifang Shang
    Fanghua Ning
    Dingguo Xia
    Electrochemical Energy Reviews, 2019, 2 : 606 - 623
  • [4] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Zhang, Kun
    Li, Biao
    Zuo, Yuxuan
    Song, Jin
    Shang, Huaifang
    Ning, Fanghua
    Xia, Dingguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 606 - 623
  • [5] Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials
    Zhou, Yuhuan
    Cui, Hongfu
    Qiu, Bao
    Xia, Yuanhua
    Yin, Chong
    Wan, Liyang
    Shi, Zhepu
    Liu, Zhaoping
    ACS MATERIALS LETTERS, 2021, 3 (04): : 433 - 441
  • [6] Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale
    Wu, Yan
    Ma, Cheng
    Yang, Jihui
    Li, Zicheng
    Allard, Lawrence F.
    Liang, Chengdu
    Chi, Miaofang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) : 5385 - 5391
  • [7] Controllable oxygen vacancies (in surface and bulk) to suppress the voltage decay of Li-rich layered cathode
    Li, Tianle
    Mao, Yangyang
    Liu, Xuefei
    Wang, Wenju
    Li, Yuqian
    Xiao, Yupeng
    Hao, Xiaoqian
    Zhu, Tianjiao
    You, Jiyuan
    Zang, Jinqi
    APPLIED SURFACE SCIENCE, 2024, 657
  • [8] Origin of structural degradation in Li-rich layered oxide cathode
    Tongchao Liu
    Jiajie Liu
    Luxi Li
    Lei Yu
    Jiecheng Diao
    Tao Zhou
    Shunning Li
    Alvin Dai
    Wenguang Zhao
    Shenyang Xu
    Yang Ren
    Liguang Wang
    Tianpin Wu
    Rui Qi
    Yinguo Xiao
    Jiaxin Zheng
    Wonsuk Cha
    Ross Harder
    Ian Robinson
    Jianguo Wen
    Jun Lu
    Feng Pan
    Khalil Amine
    Nature, 2022, 606 : 305 - 312
  • [9] On the disparity in reporting Li-rich layered oxide cathode materials
    Lin, Tongen
    Seaby, Trent
    Huang, Xia
    Wang, Lianzhou
    CHEMICAL COMMUNICATIONS, 2023, 59 (20) : 2888 - 2902
  • [10] Origin of structural degradation in Li-rich layered oxide cathode
    Liu, Tongchao
    Liu, Jiajie
    Li, Luxi
    Yu, Lei
    Diao, Jiecheng
    Zhou, Tao
    Li, Shunning
    Dai, Alvin
    Zhao, Wenguang
    Xu, Shenyang
    Ren, Yang
    Wang, Liguang
    Wu, Tianpin
    Qi, Rui
    Xiao, Yinguo
    Zheng, Jiaxin
    Cha, Wonsuk
    Harder, Ross
    Robinson, Ian
    Wen, Jianguo
    Lu, Jun
    Pan, Feng
    Amine, Khalil
    NATURE, 2022, 606 (7913) : 305 - +