Dense geodesics, tower alignment, and the Sharpened Distance Conjecture

被引:0
作者
Muldrow Etheredge
机构
[1] University of Massachusetts,Department of Physics
来源
Journal of High Energy Physics | / 2024卷
关键词
String and Brane Phenomenology; M-Theory; P-Branes;
D O I
暂无
中图分类号
学科分类号
摘要
The Sharpened Distance Conjecture and Tower Scalar Weak Gravity Conjecture are closely related but distinct conjectures, neither one implying the other. Motivated by examples, I propose that both are consequences of two new conjectures: 1. The infinite distance geodesics passing through an arbitrary point ϕ in the moduli space populate a dense set of directions in the tangent space at ϕ. 2. Along any infinite distance geodesic, there exists a tower of particles whose scalar-charge-to-mass ratio (–∇log m) projection everywhere along the geodesic is greater than or equal to 1/d−2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1/\sqrt{d-2} $$\end{document}. I perform several nontrivial tests of these new conjectures in maximal and half-maximal supergravity examples. I also use the Tower Scalar Weak Gravity Conjecture to conjecture a sharp bound on exponentially heavy towers that accompany infinite distance limits.
引用
收藏
相关论文
共 134 条
[1]  
van Beest M(2022) = 1 Phys. Rept. 989 1-undefined
[2]  
Calderón-Infante J(2019) = 1 Fortsch. Phys. 67 1900037-undefined
[3]  
Mirfendereski D(2007)undefined Nucl. Phys. B 766 21-undefined
[4]  
Valenzuela I(2017)undefined JHEP 01 088-undefined
[5]  
Palti E(2016)undefined JHEP 08 043-undefined
[6]  
Ooguri H(2017)undefined JHEP 07 145-undefined
[7]  
Vafa C(2018)undefined JHEP 08 143-undefined
[8]  
Klaewer D(2018)undefined JHEP 06 052-undefined
[9]  
Palti E(2019)undefined JHEP 03 016-undefined
[10]  
Baume F(2019)undefined JHEP 08 075-undefined