The Intrinsic π-Operator on Domain Manifolds in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^{n+1}}$$\end{document}

被引:0
|
作者
Dejenie A. Lakew
John Ryan
机构
[1] Virginia State University,Department of Mathematics and Computer Science
[2] University of Arkansas,Department of Mathematics
关键词
Clifford analysis; Domain manifolds; Intrinsic ; -operator; Beltrami equation; Primary 30G35; Secondary 35A20; 35A22; 58J15;
D O I
10.1007/s11785-009-0004-6
中图分类号
学科分类号
摘要
The main aim of this article is to study the hypercomplex π-operator over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^{n+1}}$$\end{document} via real, compact, n + 1-dimensional manifolds called domain manifolds. We introduce an intrinsic Dirac operator for such types of domain manifolds and define an intrinsic π-operator, study its mapping properties and introduce a Clifford–Beltrami equation in this context.
引用
收藏
页码:271 / 280
页数:9
相关论文
empty
未找到相关数据