Semi-local units modulo Gauss sums

被引:0
作者
Yoshitaka Hachimori
Humio Ichimura
机构
[1] Graduate School of Mathematical Sciences,
[2] University of Tokyo,undefined
[3] 3-8-1,undefined
[4] Komaba,undefined
[5] Meguro-ku,undefined
[6] Tokyo,undefined
[7] 153,undefined
[8] Japan.¶e-mail: yhachi@ms.u-tokyo.ac.jp},undefined
[9] Department of Mathematics,undefined
[10] Yokohama City University,undefined
[11] 22-2,undefined
[12] Seto,undefined
[13] Kanazawa-ku,undefined
[14] Yokohama,undefined
[15] 236,undefined
[16] Japan,undefined
来源
manuscripta mathematica | 1998年 / 95卷
关键词
Class Number; Local Unit; Quantitative Version; Famous Result; Cyclotomic Field;
D O I
暂无
中图分类号
学科分类号
摘要
For the p-th cyclotomic field k, Iwasawa proved that p does not divide the class number of its maximal real subfield if and only if the odd part of the group of local units coincides with its subgroup generated by Jacobi sums related to k. We refine and give a quantitative version of this result for more general imaginary abelian fields. Our result is an analogy of the famous result on “semi-local units modulo cyclotomic units”.
引用
收藏
页码:377 / 395
页数:18
相关论文
empty
未找到相关数据