On Spectral Analysis and Spectral Synthesis in the Space of Tempered Functions on Discrete Abelian Groups

被引:0
作者
S. S. Platonov
机构
[1] Petrozavodsk State University,Institute of Mathematics
来源
Journal of Fourier Analysis and Applications | 2018年 / 24卷
关键词
Spectral synthesis; Spectral analysis; Locally compact Abelian groups; Tempered functions; Bruhat–Schwartz functions; 43A45; 43A25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider some problems of spectral analysis and spectral synthesis in the topological vector space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} of tempered functions on a discrete Abelian group G. It is proved that spectral analysis holds in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} on every Abelian group G, that is, every nonzero closed linear translation invariant subspace of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} contains an exponential. For any finitely generated Abelian group G it is proved, that spectral synthesis holds in M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}, that is, every closed linear translation invariant subspace H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document} of M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document} coincides with the closed linear span of all exponential monomials belonging to H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {H}}}$$\end{document}. For any Abelian group G with infinite torsion free rank it is proved that spectral synthesis fails to hold in the space M(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {M}}}(G)$$\end{document}.
引用
收藏
页码:1340 / 1376
页数:36
相关论文
共 17 条
  • [1] Bruhat F(1961)Distributions sur un groupe localement compact et applications à l’étudedes représentations des groupes Bull. Soc. Math. Fr. 89 43-75
  • [2] Elliot RJ(1965)-adiques Proc. Camb. Philos. Soc. 61 617-620
  • [3] Gurevich DI(1975)Two notes on spectral synthesis for discrete Abelian groups Funct. Anal. Appl. 9 116-120
  • [4] Laczkovich M(2004)Counterexamples to a problem of L. Schwartz Proc. Am. Math. Soc. 133 1581-1586
  • [5] Székelyhidi L(2007)Harmonic analysis on discrete Abelian groups Math. Proc. Camb. Philos. Soc. 143 103-120
  • [6] Laczkovich M(1975)Spectral synthesis on discrete groups J. Funct. Anal. 19 40-49
  • [7] Székelyhidi L(2011)On the Schwartz–Bruhat space and Paley–Wiener theorem for locally compact Abelian groups St. Petersburg Math. J. 22 813-833
  • [8] Osborne MS(2012)Spectral synthesis in some topological vector spaces of functions Issues Anal. 1(19) 3-14
  • [9] Platonov SS(2013)About a structure of exponential monomials on some locally compact abelian groups Sbornik 204 1332-1346
  • [10] Platonov SS(2015)On spectral synthesis on zero-dimensional Abelian groups Sbornik 206 1150-1172