A stable convergence theorem for infinite products of nonexpansive mappings in Banach spaces

被引:0
作者
Simeon Reich
Alexander J. Zaslavski
机构
[1] The Technion – Israel Institute of Technology,Department of Mathematics
来源
Journal of Fixed Point Theory and Applications | 2010年 / 8卷
关键词
47H09; 47H10; 54E50; 54E52; Baire category; Banach space; complete metric space; fixed point; infinite product; nonexpansive mapping; porosity;
D O I
暂无
中图分类号
学科分类号
摘要
We use the concept of porosity in order to establish a generic stable convergence theorem for infinite products of nonexpansive mappings in Banach spaces.
引用
收藏
页码:395 / 403
页数:8
相关论文
共 35 条
[1]  
Bauschke H.H.(1996)On projection algorithms for solving convex feasibility problems SIAM Rev. 38 367-426
[2]  
Borwein J.M.(1977)Nonexpansive projections and resolvents of accretive operators in Banach spaces Houston J. Math. 3 459-470
[3]  
Bruck R.E.(1979)Ergodic theorems in demography Bull. Amer. Math. Soc. 1 275-295
[4]  
Reich S.(1989)Sur la porosité de l’ensemble des contractions sans point fixe C. R. Acad. Sci. Paris 308 51-54
[5]  
Cohen J.E.(1998)On a generalized best approximation problem J. Approx. Theory 94 54-72
[6]  
De Blasi F.S.(1991)Porous sets in best approximation theory J. London Math. Soc. 44 135-142
[7]  
Myjak J.(1996)Convergence of unrestricted products of nonexpansive mappings in spaces with the Opial property Nonlinear Anal. 26 767-773
[8]  
De Blasi F.S.(1988)Asymptotic properties for inhomogeneous iterations of nonlinear operators SIAM J. Math. Anal. 19 841-853
[9]  
Myjak J.(1995)Unrestricted products of contractions in Banach spaces Nonlinear Anal. 24 1103-1108
[10]  
De Blasi F.S.(2003)Reflexivity and approximate fixed points Studia Math. 159 403-415