General energy decay of solutions for a weakly dissipative Kirchhoff equation with nonlinear boundary damping

被引:0
|
作者
Amir Peyravi
机构
[1] Shiraz University,Department of Mathematics, College of Sciences
来源
Acta Mathematicae Applicatae Sinica, English Series | 2017年 / 33卷
关键词
Kirchhoff equation; general decay; boundary damping; 35B40; 35L05; 35L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the weak dissipative Kirchhoff equation utt−M(‖∇u‖22)Δu+b(x)ut+f(u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{tt}} - M\left( {\left\| {\nabla u} \right\|_2^2} \right)\Delta u + b\left( x \right){u_t} + f\left( u \right) = 0$$\end{document}, under nonlinear damping on the boundary ∂u∂v+α(t)g(ut)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{\partial u}}{{\partial v}} + \alpha \left( t \right)g\left( {{u_t}} \right) = 0$$\end{document}. We prove a general energy decay property for solutions in terms of coefficient of the frictional boundary damping. Our result extends and improves some results in the literature such as the work by Zhang and Miao (2010) in which only exponential energy decay is considered and the work by Zhang and Huang (2014) where the energy decay has been not considered.
引用
收藏
页码:401 / 408
页数:7
相关论文
共 50 条