On the mixed nonlinear integro-differential equations with weakly singular kernel

被引:0
作者
Hanane Belhireche
Hamza Guebbai
机构
[1] Laboratoire de Mathématiques Appliquées et de Modélisation,
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Volterra–Fredholm equation; Integro-differential equation; Nonlinear equation; Nyström method; Product integral method; 45D05; 45B05; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the solution existence and uniqueness of a nonlinear Volterra–Fredholm integro-differential equation with weakly singular kernel. The singular part appears in the Volterra integral when we derive the equation. To construct a numerical approximation of the solution we use numerical methods based on the approximation of the integral as the Nyström method if the integrand is regular and the product integration method with piecewise linear approximation for the weakly singular case. The convergence order depends on the coefficient of the solution and the order of regularity of the regular kernel. Finally, we build numerical example to ensure the validity and applicability of our method.
引用
收藏
相关论文
共 29 条
[1]  
Babolian E(2009)Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions Comput Math Appl 58 239-247
[2]  
Masouri Z(2012)An approximate solution for a mixed linear Volterra–Fredholm integral equation Appl Math Lett 25 1131-1134
[3]  
Hatamzadeh-Varmazyarb S(2013)Solution of system of the mixed Volterra–Fredholm integral equations by an analytical method Math Comput Model 58 1522-1530
[4]  
Chen Z(2018)Analytical and numerical study for an integro-differential nonlinear Volterra equation with weakly singular kernel Comput Appl Math 37 4661-4674
[5]  
Jiang W(2020)On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term Comput Appl Math 39 206-373
[6]  
Ghasemia M(2014)Analytical and numerical study for an integro-differential nonlinear Volterra equations AMC 229 367-424
[7]  
Fardi M(1989)Continuous time collocation methods for Volterra–Fredholm integral equations Numer Math 56 409-424
[8]  
Khoshsiar Ghaziani R(1989)On mixed Volterra–Fredholm type integral equations Indian J Pure Appl Math 17 409-290
[9]  
Ghiat M(2020)Solution of an integro-differential nonlinear equation of Volterra arising of earthquake model Bol Soc Paran Mat 11 271-undefined
[10]  
Guebbai H(1953)Sur L’équation Intégrale non Linéaire de Volterra Compos Math undefined undefined-undefined