Magnetic unit vector fields

被引:0
作者
Jun-ichi Inoguchi
Marian Ioan Munteanu
机构
[1] University of Tsukuba,Institute of Mathematics
[2] Hokkaido University,Department of Mathematics
[3] University Alexandru Ioan Cuza Iasi,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Dirichlet energy; Magnetic field; Harmonic map; Harmonic unit vector field; Magnetic map; Primary 53B25; Secondary 53C22; 53C43; 53D25;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a unit vector field on an oriented Riemannian manifold is a critical point of the Landau Hall functional if and only if it is a critical point of the Dirichlet energy functional. Therefore, we provide a characterization for a unit vector field to be a magnetic map into its unit tangent sphere bundle. Then, we classify all magnetic left invariant unit vector fields on 3-dimensional Lie groups.
引用
收藏
相关论文
共 35 条
[1]  
Gil-Medrano O(2001)Relationship between volume and energy of unit vector fields Differ. Geom. Appl. 15 137-152
[2]  
Gluck H(1986)On the volume of a unit vector field on the three sphere Comment. Math. Helv. 61 177-192
[3]  
Ziller W(2002)Energy and volume of unit vector fields on three-dimensional Riemannian manifolds Differ. Geom. Appl. 16 225-244
[4]  
González-Dávila JC(2002)Invariant harmonic unit vector fields on Lie groups Boll. Un. Mat. Ital. 52–B 377-403
[5]  
Vanhecke L(1998)Unit vector fields on spheres which are harmonic maps Math. Z. 227 83-92
[6]  
González-Dávila JC(2009)On homogeneous contact Bull. Fac. Edu. Utsunomiya Univ. Sect. 2 1-12
[7]  
Vanhecke L(2008)-manifolds Proc. Am. Math. Soc. 136 2209-2216
[8]  
Han SD(2014)A Weierstrass representation for minimal surfaces in Int. J. Geom. Methods Mod. Phys. 11 1450058-116
[9]  
Yim JW(2015)Magnetic maps Rend. Semin. Mat. Univ. Politec. Torino 73/1 101-102
[10]  
Inoguchi J(2018)New examples of magnetic maps involving tangent bundles Publ. Inst. Math. Beograd. 103 91-2112