On Skew Derivations in Semiprime Rings

被引:0
作者
Cheng-Kai Liu
机构
[1] National Changhua University of Education,Department of Mathematics
来源
Algebras and Representation Theory | 2013年 / 16卷
关键词
(Semi-)prime ring; Skew derivation; Generalized Polynomial Identity (GPI); Strong commutativity preserving; 16W25; 16N60; 16U80;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the commutativity in a (semi-)prime ring R which admits skew derivations δ1, δ2 satisfying [δ1(x), δ2(y)] = [x, y] for all x, y in a nonzero right ideal of R. This result is a natural generalization of Bell and Daif’s theorem on strong commutativity preserving derivations and a recent result by Ali and Huang.
引用
收藏
页码:1561 / 1576
页数:15
相关论文
共 63 条
  • [1] Ali S(2011)On derivations in semiprime rings Algebr. Represent. Theor. 37 443-447
  • [2] Huang S(1994)On commutativity and strong commutativity preserving maps Can. Math. Bull. 34 135-144
  • [3] Bell HE(1992)On derivations in near rings and rings Math. J. Okayama Univ. 39 3698-3708
  • [4] Daif MN(2011)On rings with locally nilpotent skew derivations Commun. Algebra 335 525-546
  • [5] Bell HE(1993)Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings Trans. Am. Math. Soc. 162 317-334
  • [6] Mason G(2007)Commutativity preserving maps revisited Isr. J. Math. 37 457-460
  • [7] Bergen J(1994)Strong commutativity preserving maps of semiprime rings Can. Math. Bull. 66 710-720
  • [8] Grzeszczuk P(2002)The noncommutative Singer–Wermer conjecture and J. Lond. Math. Soc. 161 155-160
  • [9] Brešar M(2010)–derivations Monatsh. Math. 39 2241-2248
  • [10] Brešar M(2011)Generalized skew derivations with nilpotent values on Lie ideals Commun. Algebra 158 259-270