Hermite–Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications

被引:0
作者
Saad Ihsan Butt
Artion Kashuri
Muhammad Tariq
Jamshed Nasir
Adnan Aslam
Wei Gao
机构
[1] COMSATS University Islamabad,Department of Mathematics
[2] Lahore Campus,Department of Mathematics, Faculty of Technical Science
[3] University “Ismail Qemali”,Department of Natural Sciences and Humanities
[4] Virtual University of Pakistan,School of Information Science and Technology
[5] University of Engineering and Technology,undefined
[6] Yunnan Normal University,undefined
来源
Advances in Difference Equations | / 2020卷
关键词
Hermite–Hadamard inequality; Hölder inequality; Power mean inequality; -exponential-type convexity; -polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give and study the concept of n-polynomial (s,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(s,m)$\end{document}-exponential-type convex functions and some of their algebraic properties. We prove new generalization of Hermite–Hadamard-type inequality for the n-polynomial (s,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(s,m)$\end{document}-exponential-type convex function ψ. We also obtain some refinements of the Hermite–Hadamard inequality for functions whose first derivatives in absolute value at certain power are n-polynomial (s,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(s,m)$\end{document}-exponential-type convex. Some applications to special means and new error estimates for the trapezoid formula are given.
引用
收藏
相关论文
共 51 条
[1]  
Alomari M.(2010)Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means Comput. Math. Appl. 59 225-232
[2]  
Darus M.(2016)Several complementary inequalities to inequalities of Hermite–Hadamard type for J. Nonlinear Sci. Appl. 9 705-716
[3]  
Kirmaci U.S.(1999)-convex functions Demonstr. Math. 32 687-696
[4]  
Chen F.X.(2014)The Hadamard’s inequality for J. Math. Inequal. 8 489-495
[5]  
Wu S.H.(1994)-convex functions in the second sense Aequ. Math. 48 100-111
[6]  
Dragomir S.S.(2020)Some remarks on J. Inequal. Appl. 2020 103-142
[7]  
Fitzpatrik S.(2019)-convexity in the second sense Studia Sci. Math. Hung. 56 1-12
[8]  
Eftekhari N.(2014)Some remarks on Int. J. Sci. Innov. Tech. 1 102-114
[9]  
Hudzik H.(2017)-convex functions J. Inequal. Appl. 2017 1-21
[10]  
Maligranda L.(2012)Exponential type convexity and some related inequalities J. Funct. Spaces Appl. 2012 13-20