ON INFINITE DIMENSIONAL ALGEBRAIC TRANSFORMATION GROUPS

被引:0
作者
Vladimir L. Popov
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
[2] National Research University,undefined
[3] Higher School of Economics,undefined
来源
Transformation Groups | 2014年 / 19卷
关键词
Algebraic Group; Natural Action; Maximal Torus; Dense Open Subset; Connected Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given.
引用
收藏
页码:549 / 568
页数:19
相关论文
共 18 条
[1]  
Alexander JW(1923)On the deformation of an n-cell Proc. Nat. Acad. Sci. USA 9 406-407
[2]  
Arzhantsev I(2013)Flexible varieties and automorphism groups Duke Math. J. 162 767-823
[3]  
Flenner H(1996)Smoothness, semi-stability and alterations Publ. math. l’IH ÉS 83 51-93
[4]  
Kaliman S(1994)Affine smooth varieties with finite group automorphisms Math. Z. 216 575-591
[5]  
Kutzschebauch F(1999)Affine modification and affine hypersurfaces with a very transitive automorphism group Transform. Groups 4 53-95
[6]  
Zaidenberg M(1973)Slices étales Bull. Soc. Math. France 33 81-105
[7]  
de Jong AJ(1963)On algebraic groups of birational transformations Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34 151-155
[8]  
Jelonek Z(1967)Representability of group functors, and automorphisms of algebraic schemes Invent. math. 4 1-25
[9]  
Kaliman S(1964)A note on automorphism groups of algebraic varieties Math. Annalen 156 25-33
[10]  
Zaidenberg M(1993)On automorphisms of matrix invariants Trans. Amer. Math. Soc. 340 353-371