A note on the existence of singular integrals

被引:0
作者
Yongzhong S. [1 ,2 ]
机构
[1] Dept. of Math, Zhejiang Univ, Hangzhou
[2] Dept. of Math, Wenzhou Teacher's College, Wenzhou
关键词
Lip[!sub]α[!/sub]. (R[!sup]n[!/sup]) space; Singular integral;
D O I
10.1007/s11766-001-0068-1
中图分类号
学科分类号
摘要
In this note the existence of a singular integral operator T acting on Lipα. (Rn) spaces is studied. Suppose f ∊ Lipα (Rn) (0 <α < 1). If Tf (x0) exists for a single point x0 ∊ Rn, then Tf (x) exists everywhere for x ∊ Rn and Tf∊ Lipα (Rn). © 2001, Springer Verlag. All rights reserved.
引用
收藏
页码:290 / 296
页数:6
相关论文
共 7 条
[1]  
Silei W., Some properties of Littlewood-Paley's g-function, Scientia Sinica, Series, 28, pp. 252-262, (1985)
[2]  
Shilin W., Boundedness of Littlewood-Paley g-function on Lip<sub>α</sub> (R<sup>n</sup>), Illinois. J. Of Mat, 33, 4, pp. 531-541, (1989)
[3]  
Liyuan C., Note on Hardy-Littlewood maximal function, J. Math. Res. Expositio, 15, 1, (1995)
[4]  
Xinyi C., Boundedness of Littlewood-Paley g<sub>λ</sub>* -function and the area function on Lip<sub>α</sub> (R<sup>n</sup>), Adv. In Math. (China, 25, 2, pp. 173-178, (1996)
[5]  
Taihleson M.H., The preservat[on of Lipschitz spaces under singular integral operators, Studia Mat, 24, pp. 107-111, (1964)
[6]  
Tortrinsky A., Real-Variable Methods in Harmonic Analysi, (1986)
[7]  
Stein E.M., Singular Integrals and Differentiability Properties of Function, (1970)