Understanding Micropolar Theory in the Earth Sciences I: The Eigenfrequency ωr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _r$$\end{document}

被引:7
作者
Rafael Abreu
Stephanie Durand
机构
[1] Institut für Geophysik,
[2] Westfälische Wilhelms-Universität Münster,undefined
[3] Univ Lyon,undefined
[4] UCBL,undefined
[5] ENSL,undefined
[6] UJM,undefined
[7] CNRS,undefined
[8] LGL-TPE,undefined
关键词
Timoshenko beam theory; plate theory; Cosserat theory; micropolar theory; seismology;
D O I
10.1007/s00024-021-02932-7
中图分类号
学科分类号
摘要
Even though micropolar theories are widely applied for engineering applications such as the design of metamaterials, applications in the study of the Earth’s interior still remain limited and in particular in seismology. This is due to the lack of understanding of the required elastic material parameters present in the theory as well as the eigenfrequency ωr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _r$$\end{document} which is not observed in seismic data. By showing that the general dynamic equations of the Timoshenko’s beam is a particular case of the micropolar theory we are able to connect micropolar elastic parameters to physically measurable quantities. We then present an alternative micropolar model that, based on the same physical basis as the original model, circumvents the problem of the original eigenfrequency ωr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _r$$\end{document} laking in seismological data. We finally validate our model with a seismic experiment and show it is relevant to explain observed seismic dispersion curves.
引用
收藏
页码:915 / 932
页数:17
相关论文
共 232 条
[1]  
Abbas B(1977)The second frequency spectrum of Timoshenko beams Journal of Sound and Vibration 51 123-137
[2]  
Thomas J(2021)Understanding micropolar theory in the Earth sciences II: the seismic moment tensor Pure and Applied Geophysics 178 4325-4343
[3]  
Abreu R(2018)The asymmetric seismic moment tensor in micropolar media Bulletin of the Seismological Society of America 108 1160-1170
[4]  
Durand S(2017)Micropolar modelling of rotational waves in seismology Geophysical Journal International 210 1021-1046
[5]  
Abreu R(2017)Effect of observed micropolar motions on wave propagation in deep earth minerals Physics of the Earth and Planetary Interiors 276 215-225
[6]  
Durand S(2014)A 2D Cosserat finite element based on a damage-plastic model for brittle materials Computers and Structures 135 20-31
[7]  
Thomas C(2014)Variations in elastic thickness and flexure of the Maracaibo block Journal of South American Earth Sciences 56 251-264
[8]  
Abreu R(2011)Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results International Journal of Solids and Structures 48 1962-1990
[9]  
Kamm J(2007)Thermal vibrational analysis for simply supported beam and clamped beam Journal of Sound and Vibration 308 514-525
[10]  
Reiß A-S(2009)Elastic waves in Timoshenko beams: the lost and found of an eigenmode Proceedings of the Royal Society A 465 239-255