The choice of an autocorrelation length in dark-field lung imaging

被引:0
|
作者
Simon Spindler
Dominik Etter
Michał Rawlik
Maxim Polikarpov
Lucia Romano
Zhitian Shi
Konstantins Jefimovs
Zhentian Wang
Marco Stampanoni
机构
[1] Swiss Light Source,Department of Engineering Physics
[2] Paul Scherrer Institute,Key Laboratory of Particle & Radiation Imaging
[3] Institute for Biomedical Engineering,undefined
[4] ETH Zürich,undefined
[5] Tsinghua University,undefined
[6] (Tsinghua University) Ministry of Education,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Respiratory diseases are one of the most common causes of death, and their early detection is crucial for prompt treatment. X-ray dark-field radiography (XDFR) is a promising tool to image objects with unresolved micro-structures such as lungs. Using Talbot-Lau XDFR, we imaged inflated porcine lungs together with Polymethylmethacrylat (PMMA) microspheres (in air) of diameter sizes between 20 and 500 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} over an autocorrelation range of 0.8–5.2 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}. The results indicate that the dark-field extinction coefficient of porcine lungs is similar to that of densely-packed PMMA spheres with diameter of 200μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${200}\,\upmu \hbox {m}$$\end{document}, which is approximately the mean alveolar structure size. We evaluated that, in our case, the autocorrelation length would have to be limited to 0.57μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.57}\,\upmu \hbox {m}$$\end{document} in order to image 20cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${20}\,\hbox {cm}$$\end{document}-thick lung tissue without critical visibility reduction (signal saturation). We identify the autocorrelation length to be the critical parameter of an interferometer that allows to avoid signal saturation in clinical lung dark-field imaging.
引用
收藏
相关论文
共 50 条
  • [1] The choice of an autocorrelation length in dark-field lung imaging
    Spindler, Simon
    Etter, Dominik
    Rawlik, Michal
    Polikarpov, Maxim
    Romano, Lucia
    Shi, Zhitian
    Jefimovs, Konstantins
    Wang, Zhentian
    Stampanoni, Marco
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Dark-field ghost imaging
    Dou, Ling-Yu
    Cao, De-Zhong
    Gao, Lu
    Song, Xin-Bing
    OPTICS EXPRESS, 2020, 28 (25) : 37167 - 37176
  • [3] Dark-Field Radiography of the Lungs as a new Avenue in Lung Imaging
    Zimmermann, G. S.
    Willer, K.
    Noichl, W.
    Urban, T.
    Kattau, M.
    Frank, M.
    De Marco, F.
    Schick, R.
    Fingerle, A.
    Hautmann, H.
    Haller, B.
    Meyer, P.
    Koehler, T. C.
    Prevrhal, S.
    Yaroshenko, A.
    Rindt, K.
    Pfeiffer, D.
    Rummeny, E.
    Herzen, J.
    Pfeiffer, F.
    PNEUMOLOGIE, 2021, 75 : S4 - S4
  • [4] Aberrated dark-field imaging systems
    Beltran, Mario A.
    Paganin, David M.
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [5] Dark-field imaging in coronary atherosclerosis
    Hetterich, Holger
    Webber, Nicole
    Willner, Marian
    Herzen, Julia
    Birnbacher, Lorenz
    Auweter, Sigrid
    Schueller, Ulrich
    Bamberg, Fabian
    Notohamiprodjo, Susan
    Bartsch, Harald
    Wolf, Johannes
    Marschner, Mathias
    Pfeiffer, Franz
    Reiser, Maximilian
    Saam, Tobias
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 38 - 45
  • [6] DARK-FIELD IMAGING OF SUPERCOILED DNA
    DING, MX
    LIANG, FX
    CHEN, F
    ZHAI, ZH
    ZHANG, CG
    GAI, XZ
    CHINESE SCIENCE BULLETIN, 1993, 38 (03): : 239 - 241
  • [7] Dark-field Imaging of Supercoiled DNA
    丁明孝
    梁凤霞
    陈枫
    翟中和
    张存珪
    盖秀贞
    Chinese Science Bulletin, 1993, (03) : 239 - 241
  • [8] Phase-Contrast and Dark-Field Imaging
    Zabler, Simon
    JOURNAL OF IMAGING, 2018, 4 (10):
  • [9] Terahertz dark-field imaging of biomedical tissue
    Löffler, T
    Bauer, T
    Siebert, KJ
    Roskos, HG
    Fitzgerald, A
    Czasch, S
    OPTICS EXPRESS, 2001, 9 (12): : 616 - 621
  • [10] Dark-field third-harmonic imaging
    Doronina-Amitonova, L. V.
    Lanin, A. A.
    Fedotov, I. V.
    Ivashkina, O. I.
    Zots, M. A.
    Fedotov, A. B.
    Anokhin, K. V.
    Zheltikov, A. M.
    APPLIED PHYSICS LETTERS, 2013, 103 (09)