Characterizations of near-Heyting algebras

被引:0
作者
Luciano J. González
Marina B. Lattanzi
Ismael Calomino
Sergio A. Celani
机构
[1] Universidad Nacional de La Pampa,Facultad de Ciencias Exactas y Naturales
[2] Universidad Nacional del Centro de la Provincia de Buenos Aires,CIC and Departamento de Matemática, Facultad de Ciencias Exactas
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Near-Heyting algebra; Hilbert algebra; Heyting algebra; Distributive nearlattice; 06D75; 06D20;
D O I
暂无
中图分类号
学科分类号
摘要
A near-Heyting algebra is a join-semilattice with a greatest element such that every principal upset is a Heyting algebra. We will present several characterizations of the concept of near-Heyting algebra. We will show that the class of near-Heyting algebras is a subclass of Hilbert algebras with supremum. We introduce prelinear near-Heyting algebras and present some of their characterizations.
引用
收藏
相关论文
共 25 条
[1]  
Abbott J(1967)Semi-Boolean algebra Mat. Vesnik 4 177-198
[2]  
Bezhanishvili G(2011)Priestley style duality for distributive meet-semilattices Studia Logica 98 83-122
[3]  
Jansana R(2013)Esakia style duality for implicative semilattices Appl. Categ. Structures 21 181-208
[4]  
Bezhanishvili G(2020)Quasi-modal operators on distributive nearlattices Rev. Un. Mat. Argentina 61 339-352
[5]  
Jansana R(2021)Remarks on normal distributive nearlattices Quaest. Math. 44 513-524
[6]  
Calomino I(2014)Stone style duality for distributive nearlattices Algebra Universalis 71 127-153
[7]  
Celani SA(2016)On homomorphic images and the free distributive lattice extension of a distributive nearlattice Rep. Math. Logic 51 57-73
[8]  
González LJ(2019)Distributive nearlattices with a necessity modal operator Math. Slovaca 69 35-52
[9]  
Calomino I(2012)Hilbert algebras with supremum Algebra Universalis 67 237-255
[10]  
González LJ(2008)Nearlattices Discrete Math. 308 4906-4913