Noncommutative Geometry and Integrable Models

被引:0
作者
Aristophanes Dimakis
Folkert MÜller-Hoissen
机构
[1] Institut für Theoretische Physik,
来源
Letters in Mathematical Physics | 1997年 / 39卷
关键词
completely integrable models; noncommutative geometry.;
D O I
暂无
中图分类号
学科分类号
摘要
A construction of conservation laws for σ-models in two dimensions is generalized in the framework of noncommutative geometry of commutative algebras. This is done by replacing theordinary calculus of differential forms with other differentialcalculi and introducing an analogue of the Hodge operator on thelatter. The general method is illustrated with several examples.
引用
收藏
页码:69 / 79
页数:10
相关论文
共 12 条
  • [1] Dimakis A.(1993)From continuum to lattice theory via deformation of the differential calculus Phys. Lett. B 300 141-undefined
  • [2] Müller-Hoissen F.(1979)Remarks about the existence of nonlocal charges in two-dimensional models Phys. Lett. B 82 442-undefined
  • [3] Striker T.(1993)Stochastic differential calculus, the Moyal *-product, and noncommutative geometry Lett. Math. Phys. 28 123-undefined
  • [4] Brezin E.(1995)Differential calculi on commutative algebras J. Phys. A 28 3197-undefined
  • [5] Itzykson C.(undefined)undefined undefined undefined undefined-undefined
  • [6] Zinn-Justin J.(undefined)undefined undefined undefined undefined-undefined
  • [7] Zuber J.-B.(undefined)undefined undefined undefined undefined-undefined
  • [8] Dimakis A.(undefined)undefined undefined undefined undefined-undefined
  • [9] Müller-Hoissen F.(undefined)undefined undefined undefined undefined-undefined
  • [10] Baehr H. C.(undefined)undefined undefined undefined undefined-undefined