Existence and Uniqueness of Very Weak Solutions to the Steady-State Navier–Stokes Problem in Lipschitz Domains

被引:0
作者
Vincenzo Coscia
机构
[1] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
Journal of Mathematical Fluid Mechanics | 2017年 / 19卷
关键词
Stationary Navier Stokes equations; Bounded Lipschitz domains; Boundary-value problem; Primary 76D05; 35Q30; Secondary 31B10; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that in a bounded Lipschitz domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} the steady-state Navier–Stokes equations with boundary data in L2(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\partial \Omega )$$\end{document} have a very weak solution u∈L3(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{u}\in L^3(\Omega )$$\end{document}, unique for large viscosity.
引用
收藏
页码:819 / 829
页数:10
相关论文
共 33 条
  • [1] Amrouche C(2011)Stationary Stokes, Oseen and Navier–Stokes equations with singular data Arch. Rational Mech. Anal. 199 597-651
  • [2] Rodríguez-Bellido MA(2006)A New class of weak solutions of the Navier-Stokes equa- tions with nonhomogeneous data J. Math. Fluid. Mech. 8 423-444
  • [3] Farwig R(2009)Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in Czechoslovak Math. J. 59 61-79
  • [4] Galdi GP(2005)A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in Math. Ann. 331 41-74
  • [5] Sohr H(2010)Existence and regularity of very weak solutions of the stationary Navier–Stokes equations, Arch. Rational Mech. Anal. 193 (2009), 117–152. Erratum Arch. Rational Mech. Anal. 196 1079-1080
  • [6] Farwig R(2013)On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary Arch. Rational Mech. Anal. 207 185-213
  • [7] Sohr H(2015)Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains Ann. Math. 181 769-807
  • [8] Galdi GP(2015)The existence theorem for steady Navier–Stokes equations in the axially symmetric case Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 14 233-262
  • [9] Simader CG(1933)Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique J. Math. Pures Appl. 12 1-82
  • [10] Sohr H(2000)Solvability of the Navier–Stokes system with Appl. Math. Optimization 41 365-375