Classification of Quantum Cellular Automata

被引:0
|
作者
Michael Freedman
Matthew B. Hastings
机构
[1] University of California,Microsoft Research, Station Q
[2] Santa Barbara,Department of Mathematics
[3] University of California,undefined
[4] Santa Barbara,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There exists an index theory to classify strictly local quantum cellular automata in one dimension (Fidkowski et al. in Interacting invariants for Floquet phases of fermions in two dimensions, 2017. arXiv:1703.07360; Gross et al. in Commun Math Phys 310(2):419–454, 2012; Po et al. in Phys Rev B 96: 245116, 2017). We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions (Haah et al. in Nontrivial quantum cellular automata in higher dimensions, 2018. arXiv:1812.01625). Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
引用
收藏
页码:1171 / 1222
页数:51
相关论文
共 50 条
  • [41] Quantum features of natural cellular automata
    Elze, Hans-Thomas
    EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701
  • [42] ZENO PARADOX IN QUANTUM CELLULAR AUTOMATA
    GROSSING, G
    ZEILINGER, A
    PHYSICA D, 1991, 50 (03): : 321 - 326
  • [43] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Kummamuru, R
    Timler, J
    Toth, G
    Bernstein, GH
    Lent, CS
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 875 - 880
  • [44] A CONSERVATION LAW IN QUANTUM CELLULAR AUTOMATA
    GROSSING, G
    ZEILINGER, A
    PHYSICA D, 1988, 31 (01): : 70 - 77
  • [45] Quantum-dot cellular automata
    Snider, GL
    Orlov, AO
    Amlani, I
    Zuo, X
    Bernstein, GH
    Lent, CS
    Merz, JL
    Porod, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (04): : 1394 - 1398
  • [46] Dynamic behavior of quantum cellular automata
    Tougaw, PD
    Lent, CS
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (08) : 4722 - 4736
  • [47] CELLULAR AUTOMATA FOR QUANTUM-SYSTEMS
    KOSTIN, MD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05): : L209 - L215
  • [48] Dilatability to Quantum Linear Cellular Automata
    Popovici, Adriana
    Popovici, Dan
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 355 - 361
  • [49] A geometric view of quantum cellular automata
    McDonald, Jonathan R.
    Alsing, Paul M.
    Blair, Howard A.
    QUANTUM INFORMATION AND COMPUTATION X, 2012, 8400
  • [50] Quantum-dot cellular automata
    Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
    Microelectron Eng, 1 (261-263):