Classification of Quantum Cellular Automata

被引:0
|
作者
Michael Freedman
Matthew B. Hastings
机构
[1] University of California,Microsoft Research, Station Q
[2] Santa Barbara,Department of Mathematics
[3] University of California,undefined
[4] Santa Barbara,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There exists an index theory to classify strictly local quantum cellular automata in one dimension (Fidkowski et al. in Interacting invariants for Floquet phases of fermions in two dimensions, 2017. arXiv:1703.07360; Gross et al. in Commun Math Phys 310(2):419–454, 2012; Po et al. in Phys Rev B 96: 245116, 2017). We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions (Haah et al. in Nontrivial quantum cellular automata in higher dimensions, 2018. arXiv:1812.01625). Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
引用
收藏
页码:1171 / 1222
页数:51
相关论文
共 50 条
  • [31] A Note on Elementary Cellular Automata Classification
    Martinez, Genaro J.
    JOURNAL OF CELLULAR AUTOMATA, 2013, 8 (3-4) : 233 - 259
  • [32] THE CLASSIFICATION OF HOMOGENEOUS AND SYMMETRICAL CELLULAR AUTOMATA
    MAKOWIEC, D
    ACTA PHYSICA POLONICA B, 1992, 23 (04): : 299 - 311
  • [34] A HIERARCHICAL-CLASSIFICATION OF CELLULAR AUTOMATA
    GUTOWITZ, HA
    PHYSICA D, 1990, 45 (1-3): : 136 - 156
  • [35] CLASSIFICATION OF TRIANGULAR AND HONEYCOMB CELLULAR AUTOMATA
    GERLING, RW
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1990, 162 (02) : 196 - 209
  • [36] Kolmogorov complexity and cellular automata classification
    Dubacq, JC
    Durand, B
    Formenti, E
    THEORETICAL COMPUTER SCIENCE, 2001, 259 (1-2) : 271 - 285
  • [37] Asynchronous Cellular Automata and Pattern Classification
    Sethi, Biswanath
    Roy, Souvik
    Das, Sukanta
    COMPLEXITY, 2016, 21 (S1) : 370 - 386
  • [38] A code classification for semitotalistic cellular automata
    Popovici, Adriana
    Numerical Analysis and Applied Mathematics, 2007, 936 : 428 - 431
  • [39] Free Quantum Field Theory from Quantum Cellular Automata Derivation of Weyl, Dirac and Maxwell Quantum Cellular Automata
    Bisio, Alessandro
    D'Ariano, Giacomo Mauro
    Perinotti, Paolo
    Tosini, Alessandro
    FOUNDATIONS OF PHYSICS, 2015, 45 (10) : 1137 - 1152
  • [40] Quantum models as classical cellular automata
    Elze, Hans-Thomas
    10TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2017, 845