Classification of Quantum Cellular Automata

被引:0
|
作者
Michael Freedman
Matthew B. Hastings
机构
[1] University of California,Microsoft Research, Station Q
[2] Santa Barbara,Department of Mathematics
[3] University of California,undefined
[4] Santa Barbara,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There exists an index theory to classify strictly local quantum cellular automata in one dimension (Fidkowski et al. in Interacting invariants for Floquet phases of fermions in two dimensions, 2017. arXiv:1703.07360; Gross et al. in Commun Math Phys 310(2):419–454, 2012; Po et al. in Phys Rev B 96: 245116, 2017). We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions (Haah et al. in Nontrivial quantum cellular automata in higher dimensions, 2018. arXiv:1812.01625). Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
引用
收藏
页码:1171 / 1222
页数:51
相关论文
共 50 条
  • [21] Structures in quantum cellular automata
    Groessing, Gerhard
    Zeilinger, Anton
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 151 (1-2): : 366 - 369
  • [22] Quantum cloning by cellular automata
    D'Ariano, G. M.
    Macchiavello, C.
    Rossi, M.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [23] Quantum walks via quantum cellular automata
    Costa, Pedro C. S.
    Portugal, Renato
    de Melo, Fernando
    QUANTUM INFORMATION PROCESSING, 2018, 17 (09)
  • [24] Quantum walks via quantum cellular automata
    Pedro C. S. Costa
    Renato Portugal
    Fernando de Melo
    Quantum Information Processing, 2018, 17
  • [25] Topological Conjugacy Classification of Cellular Automata
    Guan, Junbiao
    Shen, Shaowei
    2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 211 - +
  • [26] A solution to the classification problem with cellular automata
    Uzuna, Arif Orhun
    Usta, Tugba
    Dundar, Enes Burak
    Korkmaz, Emin Erkan
    PATTERN RECOGNITION LETTERS, 2018, 116 : 114 - 120
  • [27] A Cellular Automata based Classification Algorithm
    Usta, Tugba
    Dundar, Enes Burak
    Korkmaz, Emin Erkan
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 155 - 162
  • [28] Cellular automata evolution for pattern classification
    Maji, P
    Sikdar, BK
    Chaudhuri, PP
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 660 - 669
  • [29] A Generalization of Automorphism Classification of Cellular Automata
    Nishio, Hidenosuke
    JOURNAL OF CELLULAR AUTOMATA, 2012, 7 (02) : 167 - 177
  • [30] Cellular Automata Learning Algorithm for Classification
    Wongthanavasu, Sartra
    Ponkaew, Jesada
    2014 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2014,