Classification of Quantum Cellular Automata

被引:0
|
作者
Michael Freedman
Matthew B. Hastings
机构
[1] University of California,Microsoft Research, Station Q
[2] Santa Barbara,Department of Mathematics
[3] University of California,undefined
[4] Santa Barbara,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There exists an index theory to classify strictly local quantum cellular automata in one dimension (Fidkowski et al. in Interacting invariants for Floquet phases of fermions in two dimensions, 2017. arXiv:1703.07360; Gross et al. in Commun Math Phys 310(2):419–454, 2012; Po et al. in Phys Rev B 96: 245116, 2017). We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reduction, finding a classification by the first homology group of the manifold modulo torsion. Second, in two dimensions, we show that an extension of this index theory (including torsion) fully classifies quantum cellular automata, at least in the absence of fermionic degrees of freedom. This complete classification in one and two dimensions by index theory is not expected to extend to higher dimensions due to recent evidence of a nontrivial automaton in three dimensions (Haah et al. in Nontrivial quantum cellular automata in higher dimensions, 2018. arXiv:1812.01625). Finally, we discuss some group theoretical aspects of the classification of quantum cellular automata and consider these automata on higher dimensional real projective spaces.
引用
收藏
页码:1171 / 1222
页数:51
相关论文
共 50 条
  • [1] Classification of Quantum Cellular Automata
    Freedman, Michael
    Hastings, Matthew B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1171 - 1222
  • [2] Quantum Cellular Automata for Quantum Error Correction and Density Classification
    Guedes, T. L. M.
    Winter, D.
    Mueller, M.
    PHYSICAL REVIEW LETTERS, 2024, 133 (15)
  • [3] Density Classification with Non-Unitary Quantum Cellular Automata
    Wagner, Elisabeth
    Dell'Anna, Federico
    Nigmatullin, Ramil
    K. Brennen, Gavin
    ENTROPY, 2025, 27 (01)
  • [4] Quantum cellular automata
    Lent, Craig S.
    Tougaw, P.Douglas
    Porod, Wolfgang
    Bernstein, Gary H.
    Nanotechnology, 1993, 4 (01) : 49 - 57
  • [5] Quantum Walks and Quantum Cellular Automata
    Konno, Norio
    CELLULAR AUTOMATA, PROCEEDINGS, 2008, 5191 : 12 - 21
  • [6] Computational classification of cellular automata
    Sutner, Klaus
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2012, 41 (06) : 595 - 607
  • [7] Automorphism Classification of Cellular Automata
    Nishio, Hidenosuke
    FUNDAMENTA INFORMATICAE, 2010, 104 (1-2) : 125 - 140
  • [8] Classification of cellular automata and complexity
    Jin, XG
    Kim, TW
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4232 - 4237
  • [9] TOPOLOGICAL CLASSIFICATION OF CELLULAR AUTOMATA
    BINDER, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01): : L31 - L34
  • [10] Gaussian quantum cellular automata
    Krueger, Ole
    Werner, Reinhard F.
    QUANTUM INFORMATION WITH CONTINOUS VARIABLES OF ATOMS AND LIGHT, 2007, : 85 - +