Pontryagin's maximum principle of optimal control problems with time-delay

被引:0
作者
Bokov G.V. [1 ]
机构
[1] Moscow State University, Moscow
关键词
Optimal Control Problem; Uniqueness Theorem; Terminal Time; Piecewise Continuous Function; Multiplier Rule;
D O I
10.1007/s10958-011-0208-y
中图分类号
学科分类号
摘要
In this paper, we consider an optimal control problem with time-delay. The state and the control variables contain various constant time-delays. This allows us to represent the necessary conditions in an explicit form. Solution of this problem with infinite terminal time is also given. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:623 / 634
页数:11
相关论文
共 12 条
[1]  
Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimal Control [in Russian], (2005)
[2]  
Arkhipov G.I., Sadovnichy V.A., Chubarikov V.N., Lecture on Mathematical Analysis, (2003)
[3]  
Bakke V.L., Optimal fields of problems with delays, J. Optim. Theory Appl., 33, 1, pp. 69-84, (1981)
[4]  
Chyung D.H., Lee E.B., Linear optimal systems with time delays, SIAM J. Control, 4, 3, pp. 548-575, (1966)
[5]  
Elsgolts L.E., Norkin S.B., Introduction to Theory of Differential Equations with Decelerating Parameter, (1971)
[6]  
Guinn T., Reduction of delayed optimal control problems to nondelayed problems, J. Optim. Theory Appl., 18, 3, pp. 371-377, (1976)
[7]  
Halanay A., Optimal controls for systems with time lag, SIAM J. Control, 6, 2, pp. 215-234, (1968)
[8]  
Hestenes M.R., On variational theory and optimal control theory, SIAM J. Control, 3, 1, pp. 23-48, (1968)
[9]  
Kharatishvili G.L., Optimal Control Processes with Time-Delay, (1966)
[10]  
Matveev A.S., Optimal control problems with general time-delay and constraints on the state, Izv. Akad. Nauk SSSR, Ser. Mat., 52, 6, pp. 1200-1229, (1988)