Estimation of friction parameters and laws in 1.5D shallow-water gravity currents on the f-plane, by data assimilation

被引:0
作者
Achim Wirth
Jacques Verron
机构
[1] CNRS,LEGI / MEOM
来源
Ocean Dynamics | 2008年 / 58卷
关键词
Ocean dynamics; Gravity current; Friction laws; Parameter estimation; Data assimilation;
D O I
暂无
中图分类号
学科分类号
摘要
A 1.5-dimensional, 1.5-layer shallow water model and an ensemble Kalman filter are used to evaluate the feasibility of estimating friction parameters and determining friction laws of oceanic gravity currents. The two friction laws implemented are a linear Rayleigh friction and a quadratic drag law. We demonstrate that the assimilation procedure rapidly estimates the total frictional force, whereas the distinction between the two laws is evolving on a slower time scale. We also demonstrate that parameter estimation can, in this way, choose between different parametrisations and help to discriminate between physical laws of nature by estimating the coefficients presented in such parametrisations.
引用
收藏
页码:247 / 257
页数:10
相关论文
共 66 条
[1]  
Baringer MO(1997)Momentum and energy balance of the Mediterranean outflow Phys J Oceanogr 27 1678-1692
[2]  
Price JF(2003)A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems Marine J Syst 40–41 253-289
[3]  
Brusdal K(1998)Analysis scheme in the ensemble Kalman filter Mon Weather Rev 126 1719-1724
[4]  
Brankart JM(1997)Dynamics of North Atlantic models: simulation and assimilation with high resolution models Ber Inst Meereskd Kiel 294 333-1610
[5]  
Halberstadt G(1998)Stream-tube models of gravity currents in the ocean Deep-Sea Res 44 1575-10162
[6]  
Evensen G(1994)Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics Geophys J Res 99 10143-367
[7]  
Brasseur P(2003)The ensemble Kalman filter: theoretical formulation and practical implementation Ocean Dyn 53 343-168
[8]  
van Leeuwen PJ(2005)Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor-Yamada turbulence scheme Ocean Mod 9 151-89
[9]  
Dombrowsky E(1986)Gravity currents in rotating systems Ann Rev Fluid Mech 18 59-448
[10]  
Verron J(1977)Mixing on the Weddell Sea continental slope Deep-Sea Res 24 427-22275