Normalized Ground State Solutions of Nonlinear Schrödinger Equations Involving Exponential Critical Growth

被引:0
作者
Xiaojun Chang
Manting Liu
Duokui Yan
机构
[1] Northeast Normal University,School of Mathematics and Statistics & Center for Mathematics and Interdisciplinary Sciences
[2] Beihang University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Normalized ground state solutions; Nonlinear Schrödinger equations; Exponential critical growth; Constrained minimization method; Trudinger–Moser inequality; 35A15; 35J20; 35B33; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the following nonlinear Schrödinger equation: -Δu+λu=f(u)inR2,u∈H1(R2),∫R2u2dx=ρ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u=f(u) \ \ \textrm{in}\ \mathbb {R}^{2},\\ u\in H^{1}(\mathbb {R}^{2}),~~~ \int _{\mathbb {R}^2}u^2dx=\rho , \end{array}\right. } \end{aligned} \end{aligned}$$\end{document}where ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} is given, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} arises as a Lagrange multiplier and f satisfies an exponential critical growth. Without assuming the Ambrosetti–Rabinowitz condition, we show the existence of normalized ground state solutions for any ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}. The proof is based on a constrained minimization method and the Trudinger–Moser inequality in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}.
引用
收藏
相关论文
共 55 条
[11]  
Bartsch T(1992)Nontrivial solution of semilinear elliptic equation with critical exponent in Commun. Partial Differ. Equ. 29 407-315
[12]  
Soave N(1982)Orbital stability of standing waves for some nonlinear Schrödinger equations Commun. Math. Phys. 85 549-311
[13]  
Bartsch T(1997)-Laplacian equations in Abstr. Appl. Anal. 2 301-3597
[14]  
Soave N(2001) with critical growth J. Differ. Equ. 174 289-314
[15]  
Bartsch T(1997)On a class of nonlinear Schrödinger equations in J. L. Phys. Rev. Lett 78 3594-646
[16]  
Soave N(2010) involving critical growth. J. Phys. A 43 213001-1659
[17]  
Bartsch T(2005)Hartree–Fock theory for double condensates Ann. Math. Pura Appl. 184 297-179
[18]  
De Valeriola S(2019)Dark solitons in atomic Bose–Einstein condensates: from theory to experiments Adv. Differ. Equ. 24 609-6987
[19]  
Berestycki H(1997)Existence and non-existence of Schwarz symmetric ground states for elliptic eigenvalue problems Nonlinear Anal. 28 1633-541
[20]  
Lions PL(2021)A note on deformation argument for Math. Ann. 59 43-576