Normalized Ground State Solutions of Nonlinear Schrödinger Equations Involving Exponential Critical Growth

被引:0
作者
Xiaojun Chang
Manting Liu
Duokui Yan
机构
[1] Northeast Normal University,School of Mathematics and Statistics & Center for Mathematics and Interdisciplinary Sciences
[2] Beihang University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Normalized ground state solutions; Nonlinear Schrödinger equations; Exponential critical growth; Constrained minimization method; Trudinger–Moser inequality; 35A15; 35J20; 35B33; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the following nonlinear Schrödinger equation: -Δu+λu=f(u)inR2,u∈H1(R2),∫R2u2dx=ρ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda u=f(u) \ \ \textrm{in}\ \mathbb {R}^{2},\\ u\in H^{1}(\mathbb {R}^{2}),~~~ \int _{\mathbb {R}^2}u^2dx=\rho , \end{array}\right. } \end{aligned} \end{aligned}$$\end{document}where ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} is given, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document} arises as a Lagrange multiplier and f satisfies an exponential critical growth. Without assuming the Ambrosetti–Rabinowitz condition, we show the existence of normalized ground state solutions for any ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}. The proof is based on a constrained minimization method and the Trudinger–Moser inequality in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}.
引用
收藏
相关论文
共 55 条
[1]  
Akhmediev N(1999)Partially coherent solitons on a finite background Phys. Rev. Lett. 82 2661-2664
[2]  
Ankiewicz A(2012)Existence of a ground state solution for a nonlinear scalar field equation with critical growth Calc. Var. Partial Differ. Equ. 43 537-554
[3]  
Alves CO(2022)Normalized solutions for a Schrödinger equation with critical growth in Calc. Var. Partial Differ. Equ. 61 24-135
[4]  
Souto MAS(2013)Mathmatical theory and numerical methods for Bose–Einstein condensation Kinet. Relat. Models 6 1-5037
[5]  
Montenegro M(2017)A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems J. Funct. Anal. 272 4998-5037
[6]  
Alves CO(2017)Correction to“A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems” J. Funct. Anal. 272 4998-521
[7]  
Ji C(2018)Correction to“A natural constraint approach to normalized solutions on nonlinear Schrödinger equations and systems” J. Funct. Anal. 275 516-83
[8]  
Miyagaki OH(2013)Normalized solutions of nonlinear Schrödinger equations Arch. Math. 100 75-345
[9]  
Bao W(1983)Nonlinear scalar field equations I: existence of a ground state Arch. Rat. Mech. Anal. 82 313-435
[10]  
Cai Y(2021)Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth J. Funct. Anal. 280 108989-561