Variational Approximation for Fractional Sturm–Liouville Problem

被引:0
|
作者
Prashant K. Pandey
Rajesh K. Pandey
Om P. Agrawal
机构
[1] Indian Institute of Technology (BHU) Varanasi,Department of Mathematical Sciences
[2] Southern Illinois University,Mechanical Engineering and Energy Processes
来源
Fractional Calculus and Applied Analysis | 2020年 / 23卷
关键词
Secondary 34A08; 34B24; 35R11; fractional Sturm–Liouville problem; fractional variational analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a regular Fractional Sturm–Liouville Problem (FSLP) of order μ (0 < μ < 1). We approximate the eigenvalues and eigenfunctions of the problem using a fractional variational approach. Recently, Klimek et al. [16] presented the variational approach for FSLPs defined in terms of Caputo derivatives and obtained eigenvalues, eigenfunctions for a special range of fractional order 1/2 < μ < 1. Here, we extend the variational approach for the FSLPs and approximate the eigenvalues and eigenfunctions of the FSLP for fractional-order μ (0 < μ < 1). We also prove that the FSLP has countably infinite eigenvalues and corresponding eigenfunctions.
引用
收藏
页码:861 / 874
页数:13
相关论文
共 50 条
  • [1] VARIATIONAL APPROXIMATION FOR FRACTIONAL STURM-LIOUVILLE PROBLEM
    Pandey, Prashant K.
    Pandey, Rajesh K.
    Agrawal, Om P.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 861 - 874
  • [2] Variational methods for the fractional Sturm-Liouville problem
    Klimek, Malgorzata
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (01) : 402 - 426
  • [3] Variational Approach for Tempered Fractional Sturm–Liouville Problem
    Pandey P.K.
    Pandey R.K.
    Yadav S.
    Agrawal O.P.
    International Journal of Applied and Computational Mathematics, 2021, 7 (2)
  • [4] Numerical approximation to Prabhakar fractional Sturm–Liouville problem
    Mohammad Hossein Derakhshan
    Alireza Ansari
    Computational and Applied Mathematics, 2019, 38
  • [5] Numerical approximation to Prabhakar fractional Sturm-Liouville problem
    Derakhshan, Mohammad Hossein
    Ansari, Alireza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [6] A VARIATIONAL APPROACH OF THE STURM-LIOUVILLE PROBLEM IN FRACTIONAL DIFFERENCE CALCULUS
    Mert, Raziye
    Erbe, Lynn
    Abdeljawad, Thabet
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (01): : 137 - 148
  • [7] A numerical approximation for generalized fractional Sturm-Liouville problem with application
    Goel, Eti
    Pandey, Rajesh K.
    Yadav, S.
    Agrawal, Om P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 : 417 - 436
  • [8] The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion
    Ciesielski, Mariusz
    Klimek, Malgorzata
    Blaszczyk, Tomasz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 573 - 588
  • [9] Fractional Sturm-Liouville problem
    Klimek, M.
    Agrawal, O. P.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 795 - 812
  • [10] Numerical approximation of tempered fractional Sturm-Liouville problem with application in fractional diffusion equation
    Yadav, Swati
    Pandey, Rajesh K.
    Pandey, Prashant K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (03) : 610 - 627