Doubly Robust Estimation of Optimal Dynamic Treatment Regimes

被引:16
作者
Barrett J.K. [1 ]
Henderson R. [2 ]
Rosthøj S. [3 ]
机构
[1] MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge
[2] School of Mathematics and Statistics, University of Newcastle, Newcastle upon Tyne
[3] Department of Biostatistics, Institute of Public Health, University of Copenhagen, Copenhagen
基金
英国医学研究理事会;
关键词
Causal inference; Dynamic treatment regimes; G-estimation; Regret-regression;
D O I
10.1007/s12561-013-9097-6
中图分类号
学科分类号
摘要
We compare methods for estimating optimal dynamic decision rules from observational data, with particular focus on estimating the regret functions defined by Murphy (in J. R. Stat. Soc., Ser. B, Stat. Methodol. 65:331–355, 2003). We formulate a doubly robust version of the regret-regression approach of Almirall et al. (in Biometrics 66:131–139, 2010) and Henderson et al. (in Biometrics 66:1192–1201, 2010) and demonstrate that it is equivalent to a reduced form of Robins’ efficient g-estimation procedure (Robins, in Proceedings of the Second Symposium on Biostatistics. Springer, New York, pp. 189–326, 2004). Simulation studies suggest that while the regret-regression approach is most efficient when there is no model misspecification, in the presence of misspecification the efficient g-estimation procedure is more robust. The g-estimation method can be difficult to apply in complex circumstances, however. We illustrate the ideas and methods through an application on control of blood clotting time for patients on long term anticoagulation. © 2013, The Author(s).
引用
收藏
页码:244 / 260
页数:16
相关论文
共 22 条
[1]  
Arjas E., Saarela O., Optimal dynamic regimes: presenting a case for predictive inference, Int J Biostat, (2010)
[2]  
Almirall D., Ten Have T., Murphy S.A., Structural nested mean models for assessing time-varying effect moderation, Biometrics, 66, pp. 131-139, (2010)
[3]  
Chakraborty B., Murphy S.A., Strecher V., Inference for non-regular parameters in optimal dynamic treatment regimes, Stat Methods Med Res, 19, pp. 317-343, (2010)
[4]  
Cole S.R., Hernan M.A., Constructing inverse probability weights for marginal structural models, Am J Epidemiol, 168, pp. 656-664, (2008)
[5]  
Cole S.R., Frangakis C.E., The consistency statement in causal inference: a definition or an assumption?, Epidemiology, 20, pp. 3-5, (2009)
[6]  
Dawid A.P., Didelez V., Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview, Stat Surv, 4, pp. 184-231, (2010)
[7]  
Greenland S., Robins J.M., Pearl J., Confounding and collapsibility in causal inference, Stat Sci, 14, pp. 29-46, (1999)
[8]  
Henderson R., Ansell P., Alshibani D., Regret-regression for optimal dynamic treatment regimes, Biometrics, 66, pp. 1192-1201, (2010)
[9]  
Hernan M.A., A definition of causal effect for epidemiological research, J Epidemiol Community Health, 58, pp. 265-271, (2004)
[10]  
Hernan M.A., Lanoy E., Costagliola D., Robins J.M., Comparison of dynamic treatment regimes via inverse probability weighting, Basic Clin Pharmacol Toxicol, 98, pp. 237-242, (2006)