Given a quadratic map
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q:\mathbb{K}^n \to \mathbb{K}^k $$\end{document} defined over a computable subring D of a real closed field
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{K},$$\end{document} and p ∈D[Y1,...,Yk] of degree d, we consider the zero set
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z = Z(p(Q(X)), \mathbb{K}^n) \subseteq \mathbb{K}^n$$\end{document} of p(Q(X1,...,Xn)) ∈D[X1,...,Xn]. We present a procedure that computes, in (dn)O(k) arithmetic operations in D, a set
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{S}$$\end{document} of (real univariate representations of) sampling points in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb{K}^n$$\end{document} that intersects nontrivially each connected component of Z. As soon as k=o(n), this is faster than the known methods that all have exponential dependence on n in the complexity. In particular, our procedure is polynomial-time for constant k. In contrast, the best previously known procedure is only capable of deciding in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n^{O(k^2 )} $$\end{document} operations the nonemptiness (rather than constructing sampling points) of the set Z in the case of p(Y)=∑iYi2 and homogeneous Q.