On the monodromy of the moduli space of Calabi–Yau threefolds coming from eight planes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}^3}$$\end{document}

被引:0
作者
Ralf Gerkmann
Mao Sheng
Duco van Straten
Kang Zuo
机构
[1] Universität München,Mathematisches Institut
[2] East China Normal University,Department of Mathematics
[3] Universität Mainz,Institut für Mathematik
关键词
Modulus Space; Hodge Structure; Monodromy Group; Good Family; Hodge Number;
D O I
10.1007/s00208-012-0779-z
中图分类号
学科分类号
摘要
It is a fundamental problem in geometry to decide which moduli spaces of polarized algebraic varieties are embedded by their period maps as Zariski open subsets of locally Hermitian symmetric domains. In the present work we prove that the moduli space of Calabi–Yau threefolds coming from eight planes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}^3}$$\end{document} does not have this property. We show furthermore that the monodromy group of a good family is Zariski dense in the corresponding symplectic group. Moreover, we study a natural sublocus which we call hyperelliptic locus, over which the variation of Hodge structures is naturally isomorphic to wedge product of a variation of Hodge structures of weight one. It turns out the hyperelliptic locus does not extend to a Shimura subvariety of type III (Siegel space) within the moduli space. Besides general Hodge theory, representation theory and computational commutative algebra, one of the proofs depends on a new result on the tensor product decomposition of complex polarized variations of Hodge structures.
引用
收藏
页码:187 / 214
页数:27
相关论文
共 35 条
[1]  
Allcock D.(2002)The complex hyperbolic geometry of the moduli space of cubic surfaces J. Algebraic Geom. 11 659-724
[2]  
Carlson J.(1996)The moduli space of Enriques surfaces and the fake monster Lie superalgebra Topology 35 699-710
[3]  
Toledo D.(2006)Infinitesimal deformations of double covers of smooth algebraic varieties Math. Nachr. 279 716-726
[4]  
Borcherds R.(1971)Théorie de Hodge II Publ. Math. I.H.E.S. 40 5-57
[5]  
Cynk S.(1986)Monodromy of hypergeometric functions and non-lattice integral monodromy Publ. Math. I.H.E.S. Tome 63 5-89
[6]  
van Straten D.(1970)Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping Publ. Math. I.H.E.S. 38 125-180
[7]  
Deligne P.(2004)Hodge theory and geometry Bull. Lond. Math. Soc. 36 721-757
[8]  
Deligne P.(1994)A remark on tube domains Math. Res. Lett. 1 1-9
[9]  
Mostow G.D.(1957)Sur quelques points d’algèbre homologique Tôhoku Math. J. 9 119-221
[10]  
Griffiths P.(1996)Harmonic maps and J. Algebraic Geom. 5 77-106