Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some h-set

被引:0
作者
A. A. Vasil’eva
机构
[1] Moscow State University,Department of Mechanics and Mathematics
来源
Russian Journal of Mathematical Physics | 2013年 / 20卷
关键词
Mathematical Physic; Besov Space; Weight Sobolev Space; SOBOLEV Class; Irregular Boundary;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a John domain, let Γ ⊂ ∂Ω be an h-set, and let g and v be weights on Ω that are distance functions to the set Γ of special form. In the paper, sufficient conditions are obtained under which the Sobolev weighted class Wp,gr(Ω) is continuously embedded in the space Lq,v(Ω). Moreover, bounds for the approximation of functions in Wp,gr(Ω) by polynomials of degree not exceeding r − 1 in Lq,v(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \Omega $\end{document}) are found, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde \Omega $\end{document} is a subdomain generated by a subtree of the tree T defining the structure of Ω.
引用
收藏
页码:360 / 373
页数:13
相关论文
共 80 条
  • [1] Adams D R(1972)Traces of Potentials. II Indiana Univ. Math. J. 22 907-918
  • [2] Adams DR(1973)A Trace Inequality for Generalized Potentials Studia Math. 48 99-105
  • [3] Andersen K F(1983)Weighted Norm Inequalities for Certain Integral Operators SIAM J. Math. Anal. 14 834-844
  • [4] Heinig H P(2003)Some Necessary and Some Sufficient Conditions for the Compactness of the Embedding of Weighted Sobolev Spaces Ricerche Mat. 52 55-71
  • [5] Antoci F(2001)On the Compactness of Embeddings of Weighted Sobolev Spaces on a Domain with Irregular Boundary Tr. Mat. Inst. Steklov., Ross. Akad. Nauk 232 72-93
  • [6] Besov O V(2001)Sobolev’s Embedding Theorem for a Domain with Irregular Boundary Mat. Sb. 192 3-26
  • [7] Besov O V(2001)On the Compactness of Embeddings of Weighted Sobolev Spaces on a Domain with an Irregular Boundary Dokl. Akad. Nauk 376 727-732
  • [8] Besov O V(2010)Integral Estimates for Differentiable Functions on Irregular Domains Mat. Sb. 201 69-82
  • [9] Besov O V(2002)Existence and Properties of h-Sets Georgian Mathematical Journal 9 13-32
  • [10] Bricchi M(2002)Compact Embeddings between Besov Spaces Defined on Funct. Approx. Comment. Math. 30 7-36