共 48 条
- [41] New exact solutions of the Tzitzéica type equations arising in nonlinear optics using a modified version of the improved tanΦξ/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan \left( {\varPhi \left( \xi \right)/2} \right)$$\end{document}-expansion method Optical and Quantum Electronics, 2017, 49 (8)
- [42] Exploring lump soliton solutions and wave interactions using new Inverse (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document}-expansion approach: applications to the (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation Nonlinear Dynamics, 2023, 111 (21) : 20257 - 20273
- [43] Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the (G′G,1G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( \frac{G'}{G},\frac{1}{G} ) $\end{document}-expansion method Advances in Difference Equations, 2018 (1)
- [44] Investigation of (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation by generalized Kudryashov method and two variable (G′G,1G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big(\frac{G'}{G},\frac{1}{G}\big)$$\end{document}-expansion method Optical and Quantum Electronics, 56 (5)
- [45] Traveling wave solutions for density-dependent conformable fractional diffusion–reaction equation by the first integral method and the improved tan12φξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{tan}\left( {{\mathbf{\frac{1}{2}}}{\boldsymbol{\varphi }}\left({\boldsymbol{\upxi}} \right)} \right)$$\end{document}-expansion method Optical and Quantum Electronics, 2018, 50 (3)
- [46] Exact travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional compound KdVB equation using the new approach of generalized G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left (\boldsymbol { {G^{\prime }/G}} \right )$\end{document}-expansion method Pramana, 2014, 83 (3) : 317 - 329
- [47] Extraction of new soliton solutions of (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation via generalized exponential rational function method and G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G},\frac{1}{G}\right) $$\end{document} expansion method Optical and Quantum Electronics, 56 (5)
- [48] The G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{\boldsymbol{G}^{\prime }}{\boldsymbol{G}},\frac{\boldsymbol{1}}{\boldsymbol{G}}\right)$$\end{document}-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation Optical and Quantum Electronics, 2018, 50 (2)