共 48 条
- [31] The G′/G,1/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\boldsymbol {\left (G^{\prime }/G,1/G\right )}$\end{document}-expansion method for solving nonlinear space–time fractional differential equations Pramana, 2016, 87 (2)
- [32] Optical soliton solutions to the time-fractional Kundu–Eckhaus equation through the (G′/G,1/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^{\prime}/G,1/G)$$\end{document}-expansion technique Optical and Quantum Electronics, 2023, 55 (4)
- [33] (G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{G^{'}}{G^{2}}$$\end{document})-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations Optical and Quantum Electronics, 2018, 50 (3)
- [34] Generalized (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G^{\prime }}{G})$$\end{document}-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity in optical fiber materials Optical and Quantum Electronics, 2017, 49 (2)
- [35] Solitary Wave Solutions for (1+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+2)$$\end{document}-Dimensional Nonlinear Schrödinger Equation with Dual Power Law Nonlinearity International Journal of Applied and Computational Mathematics, 2019, 5 (5)
- [36] Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of (G′G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\frac{G'}{G})$$\end{document} expansion method Optical and Quantum Electronics, 2021, 53 (9)
- [37] Exact travelling wave Solutions for some nonlinear time fractional fifth-order Caudrey–Dodd–Gibbon equation by G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\left( G^{\prime }/G\right) }$$\end{document}-expansion method SeMA Journal, 2016, 73 (2) : 121 - 129
- [38] Symmetry analysis, conservation laws and exact soliton solutions for the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensional modified Zakharov–Kuznetsov equation in plasmas with magnetic fields Optical and Quantum Electronics, 56 (8)
- [39] On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the G′G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G},\frac{1}{G}\right) $$\end{document}-expansion method Ricerche di Matematica, 2015, 64 (1) : 167 - 194
- [40] Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{tan}} \left( {\frac{{\boldsymbol{\phi}} \left( {\boldsymbol{\xi}} \right)}{{\textbf{2}}}} \right)$$\end{document}-expansion method Optical and Quantum Electronics, 2018, 50 (1)