共 48 条
- [21] Optical solitons in (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensions under anti-cubic law of nonlinearity by analytical methods Optical and Quantum Electronics, 2018, 50 (2)
- [22] Soliton solutions of the generalized Klein–Gordon equation by using G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}\right) $$\end{document}-expansion method Computational and Applied Mathematics, 2014, 33 (3) : 831 - 839
- [23] A Novel G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{G}'/G} \right) $$\end{document}-Expansion Method and its Application to the (3 + 1)-Dimensional Burger’s Equations International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 13 - 24
- [24] New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({G'}/{G})$$\end{document}-expansion method Pramana, 2018, 90 (5)
- [25] Dynamics Investigation and Solitons Formation for (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} -Dimensional Zoomeron Equation and Foam Drainage Equation Journal of Nonlinear Mathematical Physics, 2023, 30 (2) : 628 - 645
- [26] Exact traveling wave solutions of generalized fractional Tzitze´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}ica-type nonlinear evolution equations in nonlinear optics Optical and Quantum Electronics, 2023, 55 (6)
- [27] \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hbar $$ \end{document}-Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation Theoretical and Mathematical Physics, 2001, 129 (1) : 1400 - 1407
- [28] A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method Optical and Quantum Electronics, 2024, 56 (2)
- [29] Improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\frac{{\phi \left(\varvec{\xi}\right)}}{2}} \right)$$\end{document}-expansion method for (2 + 1)-dimensional KP–BBM wave equation Optical and Quantum Electronics, 2018, 50 (3)
- [30] A modified form of G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left(\frac{G^\prime}{G}\right)}$$\end{document} -expansion method and its application to Potential Kadomtsev–Petviashvili (PKP) equation Japan Journal of Industrial and Applied Mathematics, 2014, 31 (1) : 125 - 136