共 48 条
- [1] Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-ϕ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-\phi (\zeta ))$$\end{document}-expansion method Ricerche di Matematica, 2024, 73 (5) : 2397 - 2410
- [2] Optical solitons for complex Ginzburg–Landau model with Kerr, quadratic–cubic and parabolic law nonlinearities in nonlinear optics by the exp(-Φ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {exp}(-\Phi (\zeta ))$$\end{document} expansion method Pramana, 2020, 94 (1)
- [3] New Exact Solutions of the (4+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4+1)$$\end{document}-Dimensional Fokas Equation Via Extended Version of exp(-ψ(κ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-\psi (\kappa ))$$\end{document}-Expansion Method International Journal of Applied and Computational Mathematics, 2021, 7 (3)
- [4] Application of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(G^{\prime}$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G)$\end{document}-expansion method for the Burgers, Burgers–Huxley and modified Burgers–KdV equations Pramana, 2011, 76 (6) : 831 - 842
- [5] Pure cubic optical solitons with improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tan(\varphi /2)$$\end{document}-expansion method Optical and Quantum Electronics, 2021, 53 (10)
- [6] Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp-ϕε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \left( { - \phi \left( \varepsilon \right)} \right)$$\end{document}-expansion method Optical and Quantum Electronics, 2017, 49 (4)
- [7] Application of tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method to solve some nonlinear fractional physical model Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 (1) : 67 - 86
- [8] The ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{G'}{G})$\end{document} -expansion method and its applications to some nonlinear evolution equations in the mathematical physics Journal of Applied Mathematics and Computing, 2009, 30 (1-2) : 89 - 103
- [9] On the exact solutions of nonlinear evolution equations by the improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\varphi /2)$$\end{document}-expansion method Pramana, 2020, 94 (1)
- [10] The Generalized \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^{\prime }/G) $$\end{document}-Expansion Method for the Loaded Korteweg–de Vries Equation Journal of Applied and Industrial Mathematics, 2021, 15 (4) : 679 - 685