The Gut Microbiome and Metabolic Health

被引:13
作者
Francino M.P. [1 ,2 ]
机构
[1] Unitat Mixta d’Investigació en Genòmica i Salut, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública/Institut Cavanilles de Biodiversitat i Biologia Evolutiva (Universitat de València), Ave
[2] CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid
关键词
Antibiotics; Dysbiosis; Gut hormones; Gut neurotransmitters; Gut permeability; Gut-brain axis; Homeostasis; Human gut microbiome; Immune regulation; Indole; Inflammation; LPS; MAMPs; Metabolic endotoxemia; Metabolism; Prebiotics; Probiotics; SCFAs; Secondary bile acids;
D O I
10.1007/s13668-017-0190-1
中图分类号
学科分类号
摘要
Purpose of review: In the last decade, it has become increasingly clear that the community of microbes inhabiting the human gut plays a crucial role in our biology. This review focuses on how the gut microbiota affects metabolism, and summarizes some of the disorders that can ensue from disturbances of the gut ecosystem. Recent findings: Recent research has highlighted that the gut microbiota is a major factor in the regulation of the body inflammatory tone, the homeostasis of glucose and lipids, the control of appetite, the integrity and function of the gut, and the communication between the gut and other organs and tissues. Summary: The microbes in our gut shape our metabolism through a network of interconnected paths, and specific changes in the microbiota can have a wide range of effects. Experimentation in mice is providing hopeful results for the development in the near future of microbiome-centered interventions that can improve overall immune and metabolic homeostasis and simultaneously ameliorate health on several fronts. © 2017, Springer Science+Business Media New York.
引用
收藏
页码:16 / 23
页数:7
相关论文
共 67 条
[11]  
den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J Lipid Res, 54, 9, pp. 2325-2340, (2013)
[12]  
Bergman E.N., Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol Rev, 70, 2, pp. 567-590, (1990)
[13]  
Macfarlane G.T., Macfarlane S., Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics, J Clin Gastroenterol, 45, pp. S120-S127, (2011)
[14]  
Bloemen J.G., Venema K., van de Poll M.C., Olde Damink S.W., Buurman W.A., Dejong C.H., Short chain fatty acids exchange across the gut and liver in humans measured at surgery, Clin Nutr, 28, 6, pp. 657-661, (2009)
[15]  
Bindels L.B., Porporato P., Dewulf E.M., Verrax J., Neyrinck A.M., Martin J.C., Et al., Gut microbiota-derived propionate reduces cancer cell proliferation in the liver, Br J Cancer, 107, 8, pp. 1337-1344, (2012)
[16]  
Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L., The role of short-chain fatty acids in health and disease, Adv Immunol, 121, pp. 91-119, (2014)
[17]  
Inan M.S., Rasoulpour R.J., Yin L., Hubbard A.K., Rosenberg D.W., Giardina C., The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line, Gastroenterology, 118, 4, pp. 724-734, (2000)
[18]  
Meijer K., de Vos P., Priebe M.G., Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health?, Curr Opin Clin Nutr Metab Care, 13, 6, pp. 715-721, (2010)
[19]  
Saemann M.D., Bohmig G.A., Osterreicher C.H., Burtscher H., Parolini O., Diakos C., Et al., Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production, FASEB J, 14, 15, pp. 2380-2382, (2000)
[20]  
Aoyama M., Kotani J., Usami M., Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways, Nutrition, 26, 6, pp. 653-661, (2010)